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We show that nonrelativistic exchange interactions and spin fluctuations can give rise to a linear

magnetoelectric effect in collinear antiferromagnets at elevated temperatures that can exceed relativistic

magnetoelectric responses by more than 1 order of magnitude. We show how symmetry arguments,

ab initio methods, and Monte Carlo simulations can be combined to calculate temperature-dependent

magnetoelectric susceptibilities entirely from first principles. The application of our method to Cr2O3

gives quantitative agreement with experiment.
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Introduction.—Recent years have seen a resurgence of
interest in materials with coupled electric and magnetic
dipoles motivated by the prospect of controlling spins with
applied voltages and charges with applied magnetic fields
in novel multifunctional devices. The simplest form of
such a control is the linear magnetoelectric (ME) coupling
between electric polarization and an applied magnetic field
or, conversely, between magnetization and an applied elec-
tric field. Although the linear ME effect was theoretically
predicted and experimentally discovered more than
50 years ago [1], finding technologically useful materials
displaying strong ME coupling at room temperature re-
mains a challenging problem [2].

Recent progress in the related field of multiferroic ma-
terials, in which ferroelectric polarizations are induced by
noncentrosymmetric magnetic orderings, has led to a clari-
fication of the microscopic origins for ME coupling [3]. In
particular, two distinct coupling mechanisms have been
identified. The first arises from relativistic effects linking
electron spin and orbital momentum, resulting in the anti-
symmetric S1 � S2 interaction between spins of different
magnetic ions. The strength of this Dzyaloshinksii-Moriya
interaction depends on polar displacements of ions, which
can make magnets with noncollinear spiral orders becom-
ing ferroelectric [4–7]. In the second mechanism, polar
deformations of the lattice are induced by Heisenberg
spin exchange interactions S1 � S2, originating from the
Fermi statistics of electrons [8,9]. This nonrelativistic
mechanism can give rise to stronger spin-lattice couplings
than those resulting from relativistic effects, which tend to
be relatively weak in 3D transition metal compounds.
Indeed, in multiferroics, the electric polarizations induced
by exchange interactions in Y1�xLuxMnO3 and GdFeO3

exceed the largest polarizations observed in spiral multi-
ferroics by 1 order of magnitude [10,11]. It was recently
suggested that Heisenberg exchange can also give rise to a
relatively strong linear ME effect [12] which, however,
seemed to require rather special noncollinear spin order-
ings and crystal structures, making it difficult to find such
materials in nature.

In this Letter, we show that the Heisenberg exchange
mechanism also works in antiferromagnets with simple
collinear orderings. It gives rise to a ME effect that reaches
its maximum at elevated temperatures where spin fluctua-
tions are large. As an example, we use Cr2O3—the first
material in which the linear ME effect was discovered. By
computing the temperature-dependent ME susceptibility of
this material entirely from first principles, we show that its
strong temperature dependence originates from the ex-
change mechanism.
This is not a straightforward computation since the ME

response driven by Heisenberg interactions, which is
strong at elevated temperatures, completely vanishes at
zero temperature where ab initio methods apply. To cir-
cumvent this problem we extract the relevant ME cou-
plings by calculating the electric polarizations of arti-
ficially imposed multiferroic spin orderings at zero temper-
ature. The magnetoelectric susceptibility is then expressed
in terms of spin correlation functions, which are calculated
by using Monte Carlo simulations of the magnetic state at
various temperatures. We show that spin fluctuations play a
crucial role in the ME response of collinear magnets.
This work extends first-principles studies of magneto-

electric materials beyond their current boundaries and
provides a unified approach to seemingly different phe-
nomena, such as the linear ME effect and multiferroicity. It
clarifies the dominant mechanism of the ME coupling in
Cr2O3 and accurately describes the temperature depen-
dence of its response with no adjustable parameters.
Furthermore, since collinear antiferromagnets with high
ordering temperatures are not uncommon, our study opens
a route to engineering strong ME responses at room
temperature.
Origin of strong magnetoelectric coupling in Cr2O3.—

The ME effect in Cr2O3 was predicted phenomenologi-
cally by Dzyaloshinskii [1] and measured by Astrov [13]
shortly after the theoretical prediction. Cr2O3 has four
magnetic Cr3þ ions in the rhombohedral unit cell. Below
TN ¼ 307 K, it develops a collinear "#"# spin ordering
along the trigonal z axis [14] [see Fig. 1(a)]. This ordering
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breaks the inversion symmetry of the paramagnetic phase,
reducing it to inversion combined with time reversal, al-
lowing for two independent ME coupling terms in the free
energy [1]:

Fme ¼ ��kEzHz � �?ðExHx þ EyHyÞ; (1)

where the ME coefficients �k and �? are proportional to

the antiferromagnetic order parameter Gz ¼ hSz1 � Sz2 þ
Sz3 � Sz4i. These two ME coefficients show very different

temperature dependences [13,15]. While �? is
temperature-independent up to T � TN and relatively
small, the ME response described by �k increases dramati-

cally from close to zero at low temperature, reaching its
maximum at Tmax � 260 K. At its peak, the magnitude of
�k is 1 order of magnitude larger than j�?j at any T and

�kðT ¼ 0Þ.
Early measurements of the temperature dependence of

the ME coefficients [16–18], as well as recent first-
principles calculations [19], have shown that the relatively
weak ME effects at low temperature result from relativistic
interactions. In what follows, we demonstrate that the
much stronger response at elevated temperatures originates
from Heisenberg exchange.

Phenomenologically, the electric polarization Pz along
the trigonal axis can couple to spins as follows:

Pz ¼ �ðS1 � S3 � S2 � S4Þ; (2)

where S1–S4 denote the magnetization of sites 1–4, re-
spectively, and � is the coupling strength that we will
determine from ab initio calculations. Here we have taken
into account the fact that the exchange-driven polarization
can depend only on scalar products of the magnetizations.
The combination of scalar products in the right-hand side
of Eq. (2) transforms in the same way as Pz; this can be
seen by inspection of Table I, which shows how the four
inequivalent magnetic sites transform under the symmetry
operations of Cr2O3.

Equation (2) is clearly appropriate for describing electric
polarization induced by spin ordering in a multiferroic

material. In addition, it applies to the linear ME effect, as
can be seen from the following heuristic argument: In an
applied magnetic field Hz the average value of spin on the
sublattice � changes by h�Sz�i / �kHz, where �k is the

longitudinal magnetic susceptibility. Equation (2) then
gives Pz / ��khSz1 � Sz2 þ Sz3 � Sz4iHz / ��kGzHz, con-

sistent with Pz ¼ � @Fme

@Ez ¼ �kHz obtained from Eq. (1).
Equation (2) is meaningful only within the mean-field

approach. To account for effects of spin fluctuations on the
ME response of Cr2O3, we will use the microscopic ex-
pression for the exchange-driven polarization in terms of
scalar products of Cr spins (rather than the sublattice
magnetizations), which has the form

Pz ¼ �

6N

X
j

X6
n¼1

ðS1;j � S3;j�bn � S2;j � S4;j�bnÞ: (3)

Here j labels unit cells, N is the total number of unit cells,
b1 ¼ a1, b2 ¼ a2, b3 ¼ a3, b4 ¼ a1 þ a2, b5 ¼ a2 þ a3,
and b6 ¼ a3 þ a1 (ai being the rhombohedral unit vec-
tors). Remarkably, the exchange interaction between the
fourth nearest-neighbor Cr ions separated by the distance
r1;ð3�a1Þ ¼ r1;ð3�a1�a2Þ ¼ 3:65 �A turns out to give rise to

the linear ME effect in Cr2O3. The shorter-range exchange
interactions do not couple the sublattices 1 and 3 (or 2 and
4) and, therefore, do not contribute to Pz, while other
interactions between these sublattices correspond to
much longer exchange paths and are negligibly small.
This allows us to accurately pinpoint the microscopic
origin of the strong ME effect in Cr2O3.
Importantly, Eqs. (2) and (3) apply to any four-sublattice

spin ordering in Cr2O3. The "#"# spin ordering realized in
the low-temperature ground state of Cr2O3 induces no
electric polarization, and so a straightforward density-
functional study of Cr2O3 does not give information about
�k at finite temperatures. However, the """# ordering shown
in Fig. 1(b) renders Cr2O3 multiferroic and induces the
electric polarization

P � Pzð"""#Þ ¼ 2�S2: (4)

We next extract � by using ab initio methods by enforc-

TABLE I. Transformation of four independent Cr sites with
the fractional coordinates r1 ¼ ðu; u; uÞ, r2 ¼ ð1=2� u; 1=2�
u; 1=2� uÞ, r3 ¼ ð1=2þ u; 1=2þ u; 1=2þ uÞ, and r4 ¼ ð1�
u; 1� u; 1� uÞ, where u � 0:153, under the generators of space
group R�3c: the 120� rotation around the z axis, C3 ¼ ðx3; x1; x2Þ,
the 180� rotation around the axis orthogonal to the z direction,
C2 ¼ ð1=2� x2; 1=2� x1; 1=2� x3Þ, and inversion I ¼
ð1� x1; 1� x2; 1� x3Þ. Here, c ¼ a1 þ a2 þ a3, where ai (i ¼
1; 2; 3) are the rhombohedral unit vectors.

C3 C2 I

1 1 2 4

2 2 1 3

3 3 4� c 2

4 4 3� c 1

FIG. 1 (color online). Rhombohedral unit cell of Cr2O3 with
the unit vectors ai (i ¼ 1; 2; 3) containing four magnetic Cr ions.
(a) shows the actual antiferromagnetic spin ordering in Cr2O3,
while (b) shows the spin ordering imposed in our first-principles
calculations to induce an electric polarization along the trigonal
z axis.
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ing """# spin ordering and calculating the magnetically
induced polarization P .

First-principles calculations of the magnetoelectric cou-
pling.—We compute � and the spin exchange parameters
by using plane-wave density-functional theory, as imple-
mented in the Vienna ab initio simulation package (VASP)
[20]. We use the projector-augmented wave method [21]
for core-valence partitioning and the local-spin-density
approximation with a rotationally invariant Hubbard-U
for the exchange-correlation potential [22]. Our Hubbard
U ¼ 2:0 eV is the same value that was taken for comput-
ing the perpendicular magnetoelectric response at zero
temperature [19]. In order to demonstrate the nature of
P , we deliberately do not include spin-orbit coupling, so
that � corresponds only to polarizations induced by ex-
change mechanism.

We work with space group R�3c at the experimental

volume [23] of 96:0 �A3 and rhombohedral angle of
55.13�. The internal coordinates are relaxed within our
density-functional calculations for the "#"# magnetic con-
figuration, yielding coordinates x ¼ 0:1536 for Cr and x ¼
0:9426 for O in Wyckoff positions 4c and 6e, respectively.
Subsequently, the Heisenberg exchange couplings J1-J5
[24], corresponding to Cr-Cr distances of 2.65–4.10 Å,
are computed by fitting a Heisenberg Hamiltonian to
density-functional theory total energies of 12 different
spin configurations with fixed ion coordinates in the hex-
agonal setting of R�3c. This method is analogous to that
employed by Shi, Wysocki, and Belashchenko [25].

Finally, we compute � by enforcing the spin configura-
tion of """# and relaxing again the ionic coordinates in the
rhombohedral unit cell. The resulting ionic configuration
has a polar lattice distortion. We compute the magnitude of
P ¼ 0:585 �C=cm2 by using the Berry phase approach
[26], which allows us to extract �. We note that P is of the
same order of magnitude as the polarization induced by
exchange interactions in multiferroics with collinear spins
[10,11].

Monte Carlo simulations.—Using Eq. (3), we can now
express the temperature-dependent ME coefficient �k in

terms of spin correlation functions:

�k ¼ @hPzi
@Hz

��������Hz¼0
¼ 2�B

kBT

�
Pz

X
�;j

Sz�;j

�
; (5)

where h. . .i denotes the thermal average at temperature T,
kB is the Boltzmann constant, and �B is the Bohr
magneton.

In the mean-field approximation (details in supplemen-
tary material [27]) one obtains [16,17]

�k ¼ �v0G
z�k

8�B

; (6)

where v0 is the unit cell volume, in agreement with the
simple argument given above. The mean-field expression
qualitatively explains the observed temperature depen-
dence of �k: It first grows, together with the order parame-

ter Gz, as the temperature drops below TN , and then
subsequently decreases and vanishes at T ¼ 0, together
with the longitudinal magnetic susceptibility �k.
In Ref. [18] an attempt was made to take into account the

effects of spin fluctuations by using a higher-order decou-
pling scheme. This approximation fails, however, close to
the transition temperature where spin fluctuations are large.
We include spin fluctuations by calculating �k numerically

by using Monte Carlo simulations of a system of 864
classical spins with exchange constants and the magneto-
electric coupling � obtained from our first-principles cal-
culations, as described above.
In a finite-sized system of Heisenberg spins, the anti-

ferromagnetic order parameter is free to rotate during the
simulation, which corresponds to exploration of different
domains. The correlation function on the right-hand side of
Eq. (5) is zero unless a single antiferromagnetic domain is
selected. We therefore apply to our system a weak stag-
gered field along the z axis, hð�Þ�, where � ¼ 1; 2; 3; 4
labels magnetic sublattices. This field mimics the presence
of the magnetic easy axis of Cr2O3 as well as the magneto-
electric annealing used in experiment to select the domain
with a given sign of magnetic order parameter. The field
strength was chosen so that it is small compared to the
scale of exchange interactions but large enough to make
the Monte Carlo results independent of h.
Figure 2 shows the temperature dependence of �k ob-

tained from Monte Carlo simulations (blue circles) and in
the mean-field approximation described above (red solid
line). The onset of the ME response in our Monte Carlo
simulations, as well as the sharp peak in the specific heat
(inset), shows that the antiferromagnetic order sets in at
�290 K, close to the experimentally observed transition
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FIG. 2 (color online). (a) Temperature dependence of the mag-
netoelectric coupling �k obtained by using ab initio values of the
exchange constants and magnetoelectric coupling combined
with Monte Carlo simulations (blue circles) and mean-field
calculations [27] (solid red line). The inset shows the tempera-
ture dependence of magnetic specific heat. The green line is a
guide to the eye. (b) Evolution of the antiferromagnetic order
parameter and the magnetic susceptibility with temperature.
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temperature TN ¼ 307 K. The maximal value of the ME
coefficient obtained from our simulations is 0:9� 10�4 (in
Gaussian units), in excellent agreement with the experi-
mental value of 1:0� 10�4 (see Ref. [15]). The maximum
value is reached at �240 K that compares well to Tmax �
260 K found in experiment. The mean-field transition
temperature (425 K) and maximal �k are significantly

higher than the Monte Carlo values, indicating the impor-
tance of spin fluctuations in this material.

Conclusions.—We have presented the first ab initio cal-
culation of a temperature-dependent linear magnetoelec-
tric response. The quantitative agreement of our results
with experimental data on Cr2O3 demonstrates that the
dominant magnetoelectric coupling in this material origi-
nates from nonrelativistic exchange interactions between
electrons. The strong temperature dependence of the mag-
netoelectric coefficient �k underscores the general impor-

tance of spin fluctuations for magnetoelectric responses of
materials with collinear spin orders. Our study shows that
the linear magnetoelectric effect and multiferroicity origi-
nate from the same microscopic mechanisms and can be
described in a unified way. In both cases magnetoelectric
effects resulting from nonrelativistic exchange interactions
exceed relativistic effects by more than 1 order of
magnitude.

Finite-temperature calculations using a similar approach
have been reported previously for fixed temperature [28],
but in this case the couplings could be extracted directly
from first-principles calculations by using perturbations
around the ground state. The approach used in this
Letter, specifically the combination of first-principles cal-
culations for artificially imposed magnetic states with
Monte Carlo simulations of magnetoelectric response at
elevated temperatures, opens a route to theoretical studies
of a large variety of temperature-dependent static and
dynamic magnetoelectric phenomena. It applies to other
materials with strong temperature variations of ME sus-
ceptibility, such as Fe2TeO6 [29], ðGaFeÞO3 [30], and
Ti2O3 [31], and can be extended to account for relativistic
effects. Accurate predictions of the magnitude of magneto-
electric responses at finite temperature will greatly facili-
tate the search for and design of materials with the
strongest responses.
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