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We study the low-temperature behavior of spin ice when uniaxial pressure induces a tetragonal

distortion. There is a phase transition between a Coulomb liquid and a fully magnetized phase.

Unusually, it combines features of discontinuous and continuous transitions: the order parameter exhibits

a jump, but this is accompanied by a divergent susceptibility and vanishing domain wall tension. All these

aspects can be understood as a consequence of an emergent SU(2) symmetry at the critical point. We map

out a possible experimental realization.
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One fascinating aspect of condensed matter physics is
the extent to which the nature and symmetries of emergent
low-energy degrees of freedom can be independent of the
high energy ones from which they derive. While low-
energy degrees of freedom of many types are possible,
systems in which these correspond to a gauge field are still
rare. In this paper we study this theme in a setting which
brings forth an unusual sequence of low-energy fluctua-
tions and symmetries: we consider spin ice, a frustrated
Ising magnet on the pyrochlore lattice, whose low-
temperature behavior is well described by a gauge field,
an emergent magnetostatics, representing a so-called
Coulomb phase where correlations decay algebraically as
r�3. Transitions out of such a phase have attracted a great
deal of attention recently [1–5].

We ask what happens when the host crystal is subjected
to uniaxial pressure. This is a powerful probe which has
previously produced interesting information in frustrated
magnets [6,7]. Specifically, we consider a pressure-
induced strain that lowers the crystal symmetry from cubic
to tetragonal. We find that this induces a highly unusual
symmetry-breaking phase transition out of the Coulomb
phase: it is characterized by discontinuities in the magne-
tization and energy, without being first order. Rather, it
occurs at a multicritical point of infinite order and is
accompanied by a divergent susceptibility. We demonstrate
both these features using Monte Carlo simulations. Further
salient properties of the critical point include the absence
of a domain wall tension, along with spin correlations that
vanish in a plane perpendicular to the strain-induced te-
tragonal axis. These should be observable experimentally,
and we discuss the scope for realizing such a transition in
the laboratory.

The unusual nature of the transition is a consequence of
an emergent SU(2) symmetry: as the pressure reduces the
symmetry of the external space, an enhanced internal
symmetry appears. We show this by means of an exact
solution in three dimensions at the critical temperature and
a mapping to a quantum phase transition in 2þ 1 dimen-

sions, between Ising and XY anisotropy in a spin-1=2
ferromagnet. Transitions with analogous features have
been studied previously in the context of ferroelectrics
[8], using versions of the model for potassium dihydrogen
phosphate (KDP) introduced by Slater [9], which in its
two-dimensional form is equivalent to the six-vertex model
and exactly solved [10]. Spin ice has the potential to
provide a much cleaner realization of this physics than
the transition in ferroelectrics, since its magnetic degrees
of freedom are much more accurately represented by Ising
variables supported on a rigid lattice.
Spin ice is well modeled by Ising spins Si parallel to

their local easy axis on the pyrochlore lattice [11]. At low
temperature, we can limit ourselves to the highly degener-
ate ground state ensemble with two spins pointing in and
two out of each tetrahedron (ice rules) and consider effec-
tive nearest neighbor interactions [12,13]. After coarse
graining the magnetization, the discrete ice rules can be
written in terms of a continuum zero-divergence constraint
from which emerges the algebraic correlations [14,15]. We
lift the degeneracy underlying the Coulomb phase via the
exchange modulation

H ¼ �X
hi;ji

JijSi � Sj; (1)

where Jij ¼ J � � > 0 for bonds on (001) planes perpen-

dicular to the strain axis, and Jij ¼ J otherwise (see Fig. 1).

For � > 0, the Z2 symmetry of this Hamiltonian is sponta-
neously broken at temperature Tc � � in favor of a state
magnetized parallel to the [001] direction. If the strain
were very large, so that Tc � J, ordering would be from
a conventional paramagnetic state and in the standard
three-dimensional Ising universality class. In contrast, for
realistic small strains, Tc is much less than J and ordering
is from the Coulomb phase, with the striking features we
describe.
We first present results from Monte Carlo simulations in

which efficient loop updates preserve the ice rules [16,17].
The temperature dependence of the magnetization M and
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of the inverse susceptibility ��1 are shown in Fig. 2, upper
panel: remarkably, M takes its saturation value Msat at all
temperatures below Tc, but � diverges as Tc is approached
from above. To better characterize the transition, we also
examine the probability distribution function (PDF) of the
order parameter; shown in Fig. 2, lower panel. This is a
standard diagnostic: two peaks are expected in the PDF at
the transition point when this is first order, but only one
peak if it is continuous [18]. Again, we find unconventional
behavior: a PDF that is uniform over all values ofM at Tc.

An exactly uniform order parameter distribution arises
within Landau theory as a limiting case. The free energy
GðMÞ close to a multicritical point of order n is

GðMÞ ¼ a

2
ðT � TcÞM2 þ b

2n
M2n: (2)

In the limit n ! 1, it is independent of M for jMj< 1 at
T ¼ Tc. Moreover, the order parameter exponent takes the
value � ¼ 1=ð2n� 2Þ, generating a jump for n ! 1.
Also, the susceptibility (�� A�jðT � TcÞ=Tcj�� for T _
Tc) has an exponent � ¼ 1 independent of n and an am-
plitude ratio A�=Aþ ¼ 1=ð2n� 2Þ that vanishes as n !
1. All these are features of our simulations. This success
of mean field theory reflects the exceptional value of the
upper critical dimension, dc2 ¼ 1, which follows from
standard arguments with allowance for the anisotropic
spatial scaling; see Eq. (5) below. This symmetry-breaking
transition differs markedly from the symmetry-sustaining
Kasteleyn transition induced in the same system at � ¼ 0
by an applied field [5].
In previous discussions of the ferroelectric KDP model

[8–10,19–22] some distinctive aspects have been recog-
nized. Indeed, Slater’s original approximation [9] yields a
free energy independent of the order parameter at the
transition, which on this basis has been called infinite order
[23]. Such a conclusion is evidently very delicate [19], and
corrections to the approximation or physical perturbations
have the potential to convert the transition into a conven-
tional one: either first order or continuous. This is in fact
the case for the material KDP itself, which has a first-order
transition that can be driven through a tricritical point
under pressure [8]. While in two dimensions an exact
solution of the KDP model corroborates the main features
of Slater’s results [10,22,24], it is not a priori clear what
this tells us for higher dimension.
The ice rules impose the same value of the magnetiza-

tion M in all (001) planes: any configuration can be
mapped onto an ensemble of strings of down spins span-
ning the system from top to bottom, with the convention
that the string vacuum is the state in which all spins are up
[19]. The number of strings defines (i) the total magneti-
zation and (ii) a topological sector, so that the former can
be used to label the latter. The equiprobability of all sectors
(see Fig. 2) already suggests that the free energy is inde-
pendent of the number of strings. This observation can be
made precise using the transfer matrix that acts between
two adjacent (001) layers of the lattice [25]. Since this
transfer matrix is a direct product of factors T representing
separate tetrahedra, we first discuss a single tetrahedron. A
single string can enter the tetrahedron at either site in one
(001) layer and leave it at either site in the other layer, with
energy cost 4�=3. This sector is therefore represented in T
by a 2� 2 block in which all entries are the Boltzmann

factor � ¼ e�4��=3. By contrast, zero or two strings in a
tetrahedron cost no energy and impose the next configura-
tion locally, generating two 1� 1 blocks with unit entries
in T. For later use, we also introduce a matrix �þ; these
two have the form

T ¼
1

� �
� �

1

0
BBB@

1
CCCA and �þ ¼

0 1 1 0
0 0 0 1
0 0 0 1
0 0 0 0

0
BBB@

1
CCCA: (3)
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FIG. 2 (color online). Top: Simulation data forM (blue circles)
and ð�TcÞ�1 (red triangles) vs T=Tc. Bottom: PDF of M=Msat at
different temperatures. For T < Tc (red) the PDF has two sharp
peaks at M ¼ �Msat. For T ¼ Tc (black) the PDF is broad in
small samples (dashed black line for L? ¼ Lz ¼ 4) and almost
flat in larger samples (solid black line for L? ¼ 4 and Lz ¼ 18).
For T > Tc (blue) the PDF is Gaussian. (Values at T � Tc scaled
to fit on vertical axis.)

FIG. 1 (color online). A tetrahedron of the pyrochlore lattice
with exchange J and J � � as indicated: the dashed bonds lie in
(001) planes. One of the two ground states for � > 0 is shown.
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The maximum eigenvalues ofT lie for T < Tc ¼ 4�
3 ln2 in the

two fully magnetized sectors, but for T ¼ Tc all sectors
have the same maximal eigenvalue. In addition, the asso-
ciated eigenvector in the one-string sector is (1,1). Explicit
calculation of the transfer matrix for a complete lattice is
complicated by the fact that the repeat unit in the (001)
direction involves four different layers. Nevertheless, its
maximal eigenvalues inherit precisely the properties de-
scribed for T, and at T ¼ Tc the associated eigenvectors in
each sector give equal weight to all arrangements of strings
on a (001) layer. The maximal eigenvalues determine the
physical properties in the thermodynamic limit with Lz �
L?. As a result: (a) below Tc the magnetisation is satu-
rated; and (b) at Tc all sectors are equiprobable and all
configurations within a sector are equiprobable. (b) means
that the absence of the termsM4,M6 . . . from Eq. (2) at the
transition point is an exact feature of the model.
Remarkably, both (a) and (b) continue to hold even if the
four interactions labeled J in Fig. 1 differ by �0 < � (as
happens if the strain axis is not exactly along [100]). Then
the entries � in T take different values, �1 and �2, on and
off the diagonal, but at Tc (where �1 þ �2 ¼ 1) all sectors
are again degenerate.

The transfer matrix for the complete lattice can alter-
natively be thought of as the evolution operator in imagi-
nary time for a two-dimensional quantum XXZ model (in
analogy with Eq. (8) of [10]). The coarse-grained quantum
Hamiltonian is

H Q ¼ �J
X
hi;ji

ðsxi sxj þ syi s
y
j þ �szi s

z
jÞ: (4)

The strings thus denote the world lines of szi ¼ 1=2 spins.
In this language the decomposition into sectors is a con-
sequence of the conservation of total sz, and is due to a
U(1) symmetry. The ground state of H Q has ferromag-

netic order of the quantum spins for all �, with an orienta-
tion for the magnetization that depends on �. For �< 1,
spins lie in the x-y plane and the state has zero-point
fluctuations, representing the Coulomb phase. For �> 1,
spins are aligned along the z axis and the state has no
fluctuations, representing the low-temperature phase of the
classical system. The equiprobability of string sectors at
the critical point corresponds here to the degeneracy of the
N þ 1 ground states of the isotropic Heisenberg ferromag-
net with N spins, for all values of the total magnetization
�z ¼ f�N=2; . . . ; N=2g. We have confirmed that this iso-
tropy is a property of the full transfer matrix for the
classical spin model, and not only of its leading eigenvec-
tors or of the effective quantum description. We do this by
checking that the classical transfer matrix commutes with
the total spin raising operator, represented for a single
tetrahedron by �þ, given in Eq. (3). This constitutes an
enhancement of the symmetry at the critical point from
U(1) to SU(2).

The quantum description can be employed to calculate
correlation functions within a given sector in spin ice, by
approximating the imaginary time direction as continuous

and treatingH Q using harmonic spin wave theory. Taking

z and r to denote distances along the [001] direction and in
the (001) plane, respectively, with � a microscopic length,
two-point correlations at Tc are

Cðr; zÞ / 1

z
exp

�
�jrj2

�z

�
: (5)

This form reflects the string autocorrelations present in a
random walk in two dimensions with propagation time z,
and agrees well with results from simulations, as shown in
Fig. 3. It is due to a fine tuned cancellation between the
energy cost and entropy gain of an increase in the number
of strings at Tc. Because of this cancellation, effective
interactions between strings vanish [17].
A further consequence of this cancellation is that the

surface tension between domains vanishes and the domain
wall width diverges, as Tc is approached from below. We
investigate this phenomenon in simulations by using weak,
position-dependent magnetic fields to induce two domains
with the interfaces between them lying on average in the
x-z plane. Results are shown in Fig. 4. At T�

c the magne-
tization profile MðyÞ is a function only of y=L?. Below Tc

a mean field treatment of H Q gives a domain wall width

‘�1
w / ffiffi

t
p � ð1� T=TcÞ1=2: this is confirmed in Fig. 4, up
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FIG. 3 (color online). Main panel: Behavior of z � Cðr; zÞ vs
r2=z, on a semilog scale for z ¼ 0 (�), 2 (d), 4 (j), 6 (m),
8 (þ), 10 (.). Dashed line shows behavior expected from
Eq. (5). The system size is L?¼14 and Lz¼196. Inset: Same
data plotted as Cðr; zÞ vs r=L? on a linear scale, showing that
correlations vanish within (001) planes.
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FIG. 4 (color online). Left: Magnetization profile vs y=L? at
T ¼ 0:999Tc for L? ¼ f6; 8; 10; 12; 16; 20g. Right: Domain wall
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to a constant vanishing in the thermodynamic limit. The
broad domain walls provide further evidence that we have
a critical, rather than a first-order transition, and may be
detectable using small angle neutron scattering.

The natural way to lift the degeneracy as required in a
magnetic compound is to apply uniaxial pressure along the
[001] axis of a single crystal. We need � positive. Within
the nearest neighbor approximation the effective coupling
has two contributions, one from the long-range dipolar
interactions [12,13,26], the other due to superexchange.
While a uniaxial compression along [001] increases the
former, the change of the latter is less obvious as it depends
on the evolution of orbital overlaps.

Results from the one experiment so far performed on
Dy2Ti2O7 under pressure [27] suggest that the effective
coupling is indeed modified so that � > 0. Pressure causes
a 4% increase inM at small field, but a 1% decrease at high
field (Fig. 5). The increase in the zero field susceptibility is
consistent with the lifting of the degeneracy in favor of the
states with magnetization along the field axis. The reduc-
tion of the saturated moment is expected when the crystal
is squeezed along [001] because of the easy axes tilt away
from [001].

We calculate the magnetization, Mð�; B; TÞ, using a
Husimi tree approximation for Dy2Ti2O7: as we are
above the upper critical dimension, this should be ex-
tremely accurate [17]. We estimate � by comparing
Mð�; B; TÞ to the data and fitting to the high field mo-
ment. The demagnetization effects are accounted for by
modeling the sample as a prolate ellipsoid with major axes
given by the dimensions of the approximately rectangular
parallelepiped specimen. For the interaction parameter of
Dy2Ti2O7 [28], the best fit, shown in Fig. 5, yields Tc ¼
4�
3 ln2 � 200 mK.

Whereas this temperature is comfortably within reach of
cryogenics, the dynamics of spin ice slows down greatly
below Tf � 600 mK, as activated ice-rule violating defects

disappear. Their presence thus appears indispensable in
practice, even though they lead to a more standard

second-order phase transition in the three-dimensional
Ising universality class [17,20]. The width of its critical
region, however, vanishes with defect concentration. One
should thus aim at the lowest dynamically accessible tran-
sition temperatures, with the target Tc � 600 mK requiring
a strain only 3 times larger than in existing experiments
[27]. We hope our work will stimulate further experimental
efforts to realize this unusual transition.
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FIG. 5 (color online). Percentage change in magnetization
measured under uniaxial pressure of 10.5 kbar, MðP;BÞ, com-
pared to that at atmospheric pressure,Mð0; BÞ, at T ¼ 1:7 K as a
function of applied field Bext along the [001] axis (j extracted
from [27]). The solid line is our best theoretical fit.
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