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A powerful method of manipulating the dynamics of quantum coherent particles is to control the phase

of their tunneling. We consider a system of two electrons hopping on a quasi-one-dimensional lattice in

the presence of a uniform magnetic field and study the effect of adding a time-periodic driving potential.

We show that the dynamical phases produced by the driving can combine with the Aharonov-Bohm

phases to give precise control of the localization and dynamics of the particles, even in the presence of

strong particle interactions.
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Introduction.—Experimental advances in producing
low-dimensional semiconductor nanostructures have given
us the opportunity of studying quantum transport in re-
gimes ranging from noninteracting to strongly correlated.
The excellent coherence properties of these devices, to-
gether with the degree of control over their geometry and
specifications, make them ideal candidates for studying
coherent transport, where quantum interference is used
to regulate the movement of particles. Such control is
particularly vital for quantum information applications,
in which the coherence and entanglement of the initial
state must be preserved during the evolution of the system.

If we consider a particle hopping on a lattice, interfer-
ence will occur if the hopping acquires a phase factor. A
direct way of doing this is to apply a magnetic field, which
produces the well-known Aharonov-Bohm (AB) phase. In
Ref. [1] it was shown that such phases could produce a
localization effect termed AB caging, in which destructive
interference bounds the set of sites that can be visited by an
initially localized wave packet. For example, in the
rhombus-chain lattice shown in Fig. 1(a), a particle initial-
ized on the central site will not spread out along the lattice
if each plaquette is threaded by a single flux quantum (� ¼
�). This caging effect has been observed experimentally in
superconducting wire networks [2], mesoscopic semicon-
ductor lattices [3], and arrays of Josephson junctions [4].

A different form of localization, also arising from quan-
tum interference, is termed [5] ‘‘coherent destruction of
tunneling’’ (CDT). This arises in systems subjected to a
time-periodic driving field. Tunneling processes acquire
phase factors from the interaction of the system with the
driving, producing an effective renormalization of the tun-
neling. For the most common case of sinusoidal driving,
for example, the single-particle tunneling is renormalized
by the zeroth Bessel function J 0 [6].

AB caging is resistant to small quantities of disorder [7]
but is swiftly destroyed by interactions [see Fig. 1(b)] due

to the formation of spatially extended states [8]. In this
Letter, we consider a system of two interacting electrons
and show that, by combining a high-frequency driving
potential with the magnetic flux, stable AB caging can be
restored. This occurs when CDT causes the (repulsive)
electrons to bind together into a composite object of charge
2e termed a ‘‘doublon,’’ which can then be caged by the
magnetic flux. We then go on to consider the effect of a
low-frequency driving field and show that this gives rise to
an unusual form of propagation in which the doublon
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FIG. 1 (color online). (a) Schematic arrangement of the
‘‘rhombus-chain’’ lattice. When each plaquette is threaded by
a flux � ¼ �, a particle initialized on the central site (filled
circle) will oscillate to its nearest neighbors (empty circles) but
will not propagate through the lattice. The circled sites form an
Aharonov-Bohm cage. (b) Occupation probability of the central
site for a two-electron system. The noninteracting case (solid
black line) displays regular, nondecaying oscillations, indicating
perfect AB caging. For weak interaction (U ¼ 0:1J, dashed red
line) the oscillations decay; the caging is no longer complete,
and the particle can leak away. For stronger interactions (U ¼ J,
dot-dashed blue line) the oscillations decay even more rapidly
and soon become irregular.
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moves in steps of two lattice sites, via the virtual occupa-
tion of the intermediate sites.

Model.—We consider a system of two electrons hopping
on a chain of connected rhombi, as shown in Fig. 1(a).
When propagation from site to site is coherent, this system
can be modeled well [9] by a single-band Hubbard model

H0 ¼ �J
X

hj;ki�
½ei�jkcyj�ck� þ H:c:� þU

X

j

nj"nj#; (1)

where J is the intersite tunneling between nearest neigh-
bors hj; ki and U represents the energy cost of doubly

occupying a lattice site. The operators cyj� (cj�) are the

usual creation (annihilation) operators for an electron of
spin � on site j, and nj� is the standard number operator.

Each rhombus is threaded by a magnetic flux�, giving rise
to the AB phases exp½i�jk� on the tunneling terms. In

semiconductor quantum dots, singlet-triplet mixing terms
are typically rather weak [10], and accordingly we neglect
their effect here. We also confine our attention in this work
to the singlet subspace, where one electron is spin-up and
the other is spin-down, since in the triplet subspace the
Hubbard interaction is not operative.

Results.—In Fig. 1(b), we show the time evolution of
the system’s wave function by plotting its overlap with the
initial state, which consists of both electrons occupying
the central site. In order to produce AB caging we set the
applied flux to � ¼ � [1]. In the absence of interactions
(U ¼ 0), the overlap displays regular sinusoidal oscilla-
tions, indicating that the pair of electrons periodically
reverts to their original configuration. Examining their
dynamics in detail reveals that the electrons periodically
oscillate from the initial site to its nearest neighbors but
propagate no further down the lattice due to the caging
effect. Raising the interaction strength to U ¼ 0:1J causes
the AB cage to partially open, allowing the electrons to
spread over the whole lattice. AsU is increased further, this
leakage occurs more rapidly.

We now consider adding a periodically oscillating
potential that rises linearly along the lattice:

HðtÞ ¼ H0 þ E sin!t
X

j

xjðnj" þ nj#Þ: (2)

Here E and! parameterize the amplitude and frequency of
the potential, respectively, and xj is the x component of

the location of site j. As HðtÞ is periodic in time, HðtÞ ¼
Hðtþ TÞ, where T ¼ 2�=! is the period of the driving,
the Floquet theorem allows us to write solutions of the
Schrödinger equation in the form j�ðtÞi ¼ e�i�ntjc nðtÞi.
Here �n are the Floquet quasienergies, and jc nðtÞi are a set
of T-periodic functions termed Floquet states. The quasi-
energies represent the appropriate generalization of energy
eigenvalues to the case of a periodically driven system and
have an analogous role in elucidating the system’s behav-
ior. In particular, exact or near degeneracy of quasienergies

results in the suppression of tunneling between the asso-
ciated Floquet states: CDT [5].
High frequency (!>U).—In Fig. 2(a), we show the

Floquet quasienergies, obtained [9] by the exact diagonal-
ization of the one-period propagator of the many-body
Hamiltonian (2), for a system in the high-frequency re-
gime. We see that the quasienergies fall into two mini-
bands: the higher miniband corresponding to Floquet
states in which sites are doubly occupied, and the lower
to states in which the electrons are separated in space. Both
bands ‘‘collapse’’ at specific values of E=!. In the high-
frequency regime, a perturbative calculation of the Floquet
system [9,11] reveals that the driving potential has the
effect of renormalizing the tunneling to an effective value
J ! Jeff ¼ JJ 0ðEx=!Þ, where x ¼ 1=2 is the x compo-
nent of the spacing between neighboring lattice sites in
units of the lattice spacing. Thus when E=! ’
4:80; 11:04 . . . , the zeros of J 0, the effective tunneling is
suppressed and the miniband collapses.
The driving field thus provides a handle to directly

control the ratio U=Jeff , which can be enhanced by tuning
the driving parameters near to a zero of J 0. This has been
used, for example, to induce the Mott transition in cold
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FIG. 2 (color online). (a) Floquet quasienergies for a periodi-
cally driven two-electron system. Parameters are U ¼ 2J and
! ¼ 16J (the high-frequency regime). The quasienergies fall
into two minibands: The lower (black) corresponds to Floquet
states in which the electrons are separated, the higher (red) to
states in which both electrons occupy the same site. The mini-
bands are separated by the Hubbard gap U. Both minibands
collapse at E=! ¼ 4:80; 11:04, corresponding to CDT. (b) For
E=! ¼ 4:80 and � ¼ �=2 the occupation of the central site
(solid black line) oscillates as electrons periodically tunnel to
and from their nearest neighbors [see Fig. 1(a)]. For ease of
comparison, the occupation of the neighboring site (dashed red
line) is multiplied by 2. When � is tuned away from this value,
AB caging does not occur; the dot-dashed blue line shows the
occupation of the central site for � ¼ 0 for which the electrons
diffuse throughout the lattice.
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atom systems [12]. Another consequence of enhancing this
ratio is the creation of repulsively bound pairs [13,14], or
doublons. Since binding is usually associated with attrac-
tive forces, it may seem counterintuitive for strong repul-
sive interactions to also produce this effect. Qualitatively, it
can be understood from an energetics argument. The en-
ergies of a one-dimensional lattice form a Bloch band with
a width of 2J, and thus the maximum kinetic energy carried
by two free particles is 4J. If the particles are initially
prepared in a state with a potential energy much greater
than 4J, the initial state then cannot decay without the
mediation of dissipative processes. In sufficiently clean
systems the only decay path [15] is from scattering with
unbound particles, resulting in a doublon lifetime that
depends exponentially on U=Jeff .

To observe the dynamics of doublons we require Jeff to
be close to zero (to enhance the ratio U=Jeff for doublon
formation to occur) but to be sufficiently large for the
doublon tunneling to be non-negligible. In Fig. 2(b), we
show the occupation of the central site and its nearest
neighbors for driving parameters E=! ¼ 4:80. For general
values of the magnetic flux �, the doublon slowly diffuses
through the lattice, the two electrons remaining bound
together but not being localized. For the case of � ¼
�=2, however, the dynamics again shows a regular oscil-
latory motion due to AB caging. Thus, even though the
system is strongly interacting (U ¼ 2J), AB caging can
nonetheless be induced. Since the doublon has a charge of
2e, however, the caging now occurs when� is equal to half
a flux quantum.

Resonant frequency.—We now consider raising the in-
teraction strength further. When ! is no longer the domi-
nant energy scale, the simple perturbation theory must be
generalized to include interactions [9,16]. This reveals that
in this regime the effect of the driving field is particularly
strong when it is resonant with the driving frequency U ¼
n!, where n is an integer.

In Fig. 3(a), we show the quasienergies obtained for
parameters U ¼ 16J and ! ¼ 16J: the n ¼ 1 resonance.
As before, the Floquet states in which the electrons are
separated fall into a miniband modulated byJ 0ðE=2!Þ. As
predicted by perturbation theory [13], however, the quasi-
energies in which the Hubbard interaction is operative are
instead modulated by J nðE=2!Þ, where n is the order of
the resonance. Consequently, doublon formation now oc-
curs when E=2! is tuned near to a zero of J 1. This is
shown in Fig. 3(b); when E=! ¼ 7:65, close to the first
zero of J 1 a stable doublon is formed, which undergoes
AB caging when the applied flux is set to � ¼ �=2. As
before, AB caging occurs only for this specific flux value,
and for other values of � the doublon simply spreads
through the lattice. It is interesting to note that, unlike
the high-frequency case, the oscillation is now complete;
the central site empties completely as the doublon tunnels
to the other sites in the AB cage. This is a consequence of

the resonance condition. In an effect analogous to photon-
assisted tunneling, the doublon can absorb energy from
the driving field to exactly compensate forU, meaning that
the system becomes effectively noninteracting.
Low frequency (!<U).—Finally, we consider the case

when the driving frequency is much smaller than the
interaction strength. If U=J is sufficiently large, then dou-
blons will form in the static system, and the driving field
can now be used to control their motion. In Fig. 4(a), we
show the Floquet spectrum for states in which sites are
doubly occupied, which we can regard as a miniband of
doublon states. This miniband is clearly modulated by
J 0ð2Ex=!Þ, where the factor of 2 in the argument of the
Bessel function occurs because the doublon has charge 2e.
The miniband structure persists until E=! � 8, which
marks the onset of resonant driving [13]. For these parame-
ters this will be an n ¼ 8 resonance (since U=! ¼ 8), but,
due to the strong driving potential required to reach this
regime, we do not study it further here.
Tuning E=! close to 2.40 thus has the effect of suppress-

ing direct tunneling of the doublon. Motion is still possible,
however, via second-order tunneling processes; the bound
electrons hop to intermediate lattice sites (incurring an
energy cost of U) and then recombine after another hop-
ping process, as illustrated schematically in Fig. 4(c). This
motion has the unusual feature that it occurs in steps of two
lattice sites, with the intermediate sites being occupied
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FIG. 3 (color online). (a) Resonant driving, U ¼ 16J, ! ¼
16J. Quasienergies corresponding to states in which the elec-
trons are separated (black) are modulated by the zeroth Bessel
function J 0ðE=2!Þ. The quasienergies corresponding to doubly
occupied states (red) are instead modulated by J 1ðE=2!Þ and
show band collapses at E=! ’ 7:66; 15:44. (b) For E=! ¼ 7:65
and � ¼ �=2 AB caging occurs, and the occupation of the
central site (solid black line) oscillates from 2 to zero, while
correspondingly the occupation of the neighboring sites (dashed
red line) oscillates between zero and 0.5. Tuning � away from
this value destroys the AB caging; the dot-dashed blue line
shows the occupation of the central site for � ¼ 0.
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only virtually. If we separate the rhombus-chain lattice into
‘‘edge’’ and ‘‘spinal’’ sites, as shown in Fig. 4(d), it can be
easily seen that this tunneling process does not connect
spinal sites to edge sites and so produces a separation
between these two sublattices.

In Fig. 4(b), we show the result of initializing the system
in a doublon state at the center of a 19-site lattice. We can
see that the doublon propagates smoothly along the spine
of the lattice, the occupation of edge sites always remain-
ing less than 0.006. This propagation occurs symmetrically
to the left and right and so behaves as an electronic beam
splitter [17]. On reaching the final sites [sites 3 and 30, as
shown in Fig. 4(d)], the wave packet is reflected and
revives in the central site with excellent fidelity. We
note that the doublon does not reach site 4 (40), although
in principle the second-order tunneling process should
permit this. This is a finite-size effect [11]; the states
that project onto the terminating sites (4 and 40) have a
different symmetry to the other spinal states and so lie in a
different miniband, thereby isolating them from the
dynamics of the spinal states.

Conclusions.—Combining AB phases with a time-
dependent driving potential gives an extremely rich
behavior. Promising systems to observe these effects ex-
perimentally are gated semiconductor nanostructures,
which have the excellent coherence properties [18] and
addressability required. Other interesting possibilities in-
clude arrays of coupled Josephson junctions—in which AB
caging has already been demonstrated [4]—or cold atoms
held in optical lattice potentials [12,14,15]. In particular,

we have shown that AB trapping can occur in an interact-
ing system by using CDT to convert pairs of electrons into
doublons. The resonant behavior displayed by the driven
system also provides a convenient means to measure the
strength of interactions by suitably tuning the value of !.
Reducing the frequency of the driving gives complete
coherent control over the dynamics of the doublons, allow-
ing them to be localized within an AB cage or to propagate
via an unusual second-order tunneling process. This
permits the creation and control of spatially separated
entangled states of two electrons via the beam-splitter
effect, with many potential applications to quantum
information.
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[8] J. Vidal, B. Douçot, R. Mosseri, and P. Butaud, Phys. Rev.
Lett. 85, 3906 (2000).

[9] C. E. Creffield and G. Platero, Phys. Rev. B 65, 113304
(2002).

[10] I. A. Merkulov, Al. L. Efros, and M. Rosen, Phys. Rev. B
65, 205309 (2002).

[11] M. Holthaus, Phys. Rev. Lett. 69, 351 (1992).
[12] A. Zenesini, H. Lignier, D. Ciampini, O. Morsch, and

E. Arimondo, Phys. Rev. Lett. 102, 100403 (2009).
[13] C. E. Creffield and G. Platero, Phys. Rev. B 69, 165312

(2004).
[14] K. Winkler et al., Nature (London) 441, 853 (2006).
[15] N. Strohmaier et al., Phys. Rev. Lett. 104, 080401 (2010).
[16] C. E. Creffield and G. Platero, Phys. Rev. B 66, 235303

(2002).
[17] L. Hofstetter, S. Csonka, J. Nygård, and C. Schönenberger,
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FIG. 4 (color online). (a) For low driving frequencies, U ¼
16J, ! ¼ 2J, the quasienergies corresponding to doubly
occupied states form a miniband modulated by J 0ðE=!Þ.
(b) Doublon dynamics for a 19-site system, where E=! ¼
2:30 to suppress the direct doublon tunneling. The doublon is
initialized on the central site 1 (see below) and propagates along
the spine of the lattice. After reaching site 3 (30) it is reflected
and returns to the center. (c) When the doublon tunneling is
suppressed, motion occurs via second-order tunneling; the
doublon first unbinds (1) and then recombines (2). The doublon
thus propagates in steps of two lattice sites, occupying the
intermediate sites only virtually. (d) Schematic arrangement of
the 19-site lattice. Filled circles indicate spinal sites, empty
circles the edge sites. The second-order tunneling clearly does
not connect spinal sites to edge sites.
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