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Functionalizing graphene was recently shown to have a dramatic effect on the electronic properties of

this material. Here we investigate spatial ordering of adatoms driven by the RKKY-type interactions. In

the ordered state, which arises via a Peierls-instability-type mechanism, the adatoms reside mainly on one

of the two graphene sublattices. Bragg scattering of electron waves induced by sublattice symmetry

breaking results in a band gap opening, whereby Dirac fermions acquire a finite mass. The band gap is

found to be immune to the adatoms’ positional disorder, with only an exponentially small number of

localized states residing in the gap. The gapped state is stabilized in a wide range of electron doping. Our

findings show that controlled adsorption of adatoms or molecules provides a route to engineering a tunable

band gap in graphene.
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The unique electronic properties of graphene, a one-
atom-thin carbon sheet with a tunable electron density
[1] and high carrier mobility [2,3], make it an attractive
material for applications in nanoelectronics [4]. However,
because of the gapless semimetallic character of the gra-
phene band structure, the future of graphene electronics
depends on developing methods to engineer a band gap in
this material. The gapless character of electron dispersion
in pristine graphene is protected by the high symmetry of
its lattice, in which two carbon sites in the unit cell are
equivalent. The simplest kind of gap-opening perturbation
which lifts this symmetry can be described by unequal
potentials uA and uB on the A and B sites [5], leading to
a finite mass of Dirac quasiparticles near points K and K0
of the Brillouin zone. The quasiparticle spectrum, de-
scribed by the Hamiltonian

HKðK0Þ ¼ uA v0ðp1 � ip2Þ
v0ðp1 � ip2Þ uB

� �
; (1)

v0 � 106 m=s, features a band gap of size � ¼ juA � uBj,
which opens due to Bragg scattering of electron waves on
the periodic sublattice potential.

A gap opening via such a mechanism could occur in
epitaxial graphene, grown or placed on a lattice-matched
substrate [6–8]. Yet, while the approach involving lattice-
matched substrates is simple and direct, combining it with
transport measurements proved challenging (see also
Ref. [9]). A gap opening due to sublattice asymmetry is
more readily achievable in bilayer graphene, where the
sites A and B reside on different layers. In bilayer gra-
phene, the A=B symmetry can be lifted by asymmetric
chemical doping [10,11] or electrical gating [12], leading
to a gap opening.

Another promising method for gap engineering relies on
spatial confinement, involving patterning graphene into
narrow ribbons [13,14], or quantum dots [15]. The gap

obtained by such a method can be tuned by varying the
spatial width of graphene ribbons or dots. However, the
approaches relying on spatial confinement are prone to
disorder, because of scattering of electron waves on the
rough edges of patterned graphene. Localized states, ap-
pearing inside the band gap, transform it into a ‘‘transport
gap’’ [16]. In contrast, the gap opened due to lifting the
A=B symmetry can be expected to be more robust in the
presence of disorder, as long as the mean free path is large
compared to the A=B modulation period.
An elegant approach to modify electronic properties of

graphene, demonstrated recently [17,18], is based on the
well established technique of chemical functionalization,
in which groups such as H, OH, or F bind covalently to
carbon atoms, transforming the trigonal sp2 orbital to the
tetragonal sp3 orbital. Such transformation drastically al-
ters local electronic properties. Theory predicts that, at
100% coverage by H adatoms, graphene turns into a
wide-gap semiconductor, called graphane [19]. The experi-
ments [17,18], however, are done at low coverage, typi-
cally of about a few percent. Can a state with a band gap be
realized in the low-coverage regime?
Electronic properties at low adatom coverage are domi-

nated by resonant scattering of electron waves on the
adatoms [20–22]. Pairwise RKKY-type interactions be-
tween adatoms were analyzed in Ref. [23], where the
interaction sign was found to depend on whether the inter-
acting atoms occupy the same sublattice or different sub-
lattices. Such sublattice dependence suggests that the
RKKY interactions can drive ordering of the adatoms in
which sublattices A and B become unequally populated.
Here we propose a mechanism for spontaneous ordering,

illustrated in Fig. 1, which is analogous to that of Peierls
instability. The adatom ordering over sublattices A and B
leads to a gap opening due to electron waves Bragg scat-
tering on the A=Bmodulation, resulting in electronic states
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in the gap shifting up and down in energy. Crucially,
these shifts are asymmetric, with states shifting predom-
inately down in energy to a peak centered at the energy of a
single atom resonance, " ¼ "0 < 0. The system gains en-
ergy as a result of such level shifts for electron dopings in
the range indicated in Fig. 1 inset, corresponding to posi-
tive chemical potential values. For such dopings, the
gapped state with unequal sublattice population is stabi-
lized. The gap value is determined by the scattering prop-
erties of adatoms and their concentration, and is therefore
tunable.

Because of the resonant character of electron scattering,
the electron-mediated interactions fall off slowly with
distance at adatom separations r & ‘0 ¼ @v0=j"0j, as
UðrÞ � 1=r, and more rapidly at larger distances [23].
Hence for not too low adatom coverage, n * n� ¼
ða=‘0Þ2, where a ¼ 0:142 nm is the lattice constant, the
adatom ordering cannot be analyzed using a pairwise
interaction model. Here we present a theory which fully
accounts for the nonpairwise, collective nature of electron-
mediated interactions in functionalized graphene.

Our approach applies to different atoms and chemical
groups used to functionalize graphene. Ab initio study [22]
predicts the resonance energy values which span a wide
range: �"0 ¼ 0:03, 0.11, 0.70, 0.67 eV for H, CH3, OH,
and F, respectively. This corresponds to the characteristic
values n� � 10�4, 10�3, 0.05, 0.05. In the limit of very
small coverage n � n�, a pairwise interaction model can
be used to describe ordering [24,25], whereas for larger

coverage values a self-consistent treatment, presented be-
low, must be employed.
The Peierls-type scenario for ordering described above

can be tested by direct numerical diagonalization of the
nearest neighbor tight binding Hamiltonian (see Fig. 2):

H ¼ X
jx�x0j¼1

t0ðc y
xc x0 þ H:c:Þ þX

x

uðxÞc y
xc x; (2)

with t0 � 3:1 eV, and potential uðxÞ ¼ P
iU�ðx� xiÞ tak-

ing value U on the sites occupied by adatoms. Large U �
t0 was used to model the effect of the sp2 to sp3 trans-
formation, which inhibits the conduction electrons from
occupying the adatom sites, effectively turning these sites
into vacancies. In the simulation shown in Fig. 2 we used
U ¼ 6t0, which gives the resonance energy positioned at
"0 � �0:4 eV.
The behavior of the DOS, obtained for different occu-

pancy values by diagonalizing the Hamiltonian (2), agrees
well with the results obtained by an analytic method (see
Fig. 1). The peak at " ¼ "0, which is a signature of
resonant scattering on individual adatoms [20,22], is pres-
ent for all occupancies, but is more pronounced for the
sublattice-ordered state, nA � nB or nB � nA. The reso-
nances marked 20 and 200 correspond to the single-particle
states formed near two neighboring adatoms. The DOS
remains finite at all energies for nA � nB. In contrast, the
DOS vanishes in the interval 0< " & 0:4 eV for the
sublattice-ordered state, which corresponds to the band
gap opening.
To estimate the energy gain due to ordering, we evalu-

ate the energy of the system as a function of the
adatom occupancy fraction and electron concentra-
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FIG. 1 (color online). Peierls-type instability resulting from
adatom ordering over sublattices A and B. A gap in the density
of electronic states opens up due to Bragg scattering on the A=B
modulation when the occupation probabilities are unequal, nA �
nB. The states in the gap move down in energy into a peak
positioned at the energy of a single adatom resonance. Inset: the
ordered state is stabilized in a wide range of carrier densities, for
which the energy gain per adatom is positive. For details of
calculation see discussion following Eq. (8). Different curves
correspond to the occupancy fraction nA=ðnA þ nBÞ ¼
0; 0:1; . . . ; 0:5 with ðnA þ nBÞ=2 ¼ 0:04, U ¼ 6t0, W ¼ 3t0.

FIG. 2 (color online). The density of electronic states as a
function of energy for different sublattice occupancy ratios,
obtained by numerical diagonalization of the Hamiltonian (2),
averaged over 160 realizations of disorder. The band gap, which
opens at nA � nB and nB � nA, is immune to disorder: no
electronic states are found inside the gap. Sublattice ordering
results in the energy gain at positive dopings (inset). Parameters
used: system size 62	 34, U ¼ 6t0, ðnA þ nBÞ=2 ¼ 0:034.
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tion N=Ns � 1=2 (N the number of electrons, Ns the
number of sites). The results for �E, the energy gain per
adatom, shown in Fig. 2 inset, agree with our Peierls-type
argument: the sublattice-ordered state is stabilized at posi-
tive doping. The ordering temperature, estimated as Tc ¼
2�E [26], takes values in the hundreds of Kelvin for
parameters used in Fig. 2.

Remarkably, in our simulation the energy gap is found to
be immune to the effects of disorder. As Fig. 2 indicates, no
states inside the gap are found when the adatoms randomly
populate one sublattice, A or B (160 disorder realizations
were analyzed). Such partial ordering, illustrated in Fig. 3,
is sufficient to completely expel the midgap states, and
open a band gap. This surprising result seems to be in an
apparent contradiction with the intuition based on the
physics of localization of electronic states in disordered
systems.

To understand this behavior, we shall start with a simple
case of a weak adatom potential U � t0, and then general-
ize to the case of strong potential. At a weak potential,
within the mean-field approximation, we have uA ¼ nAU
and uB ¼ nBU in the Hamiltonian (1). For the gap to
survive in the presence of disorder, its value should exceed
the disorder broadening,� ¼ juA � uBj � @=�"��. Using
the Born approximation for the scattering rate, we find

@

�ð"Þ ¼ �

2n0
�ð"ÞjUj2ðnA þ nBÞ; n0 ¼ 2

3
ffiffiffi
3

p
a2

; (3)

where 2n0 is the density of carbon atoms in the graphene
lattice. Taking �ð"Þ to be that of pure graphene for one spin
projection, �ð�Þ ¼ j�j

�@2v2
0

, and using the relation v0 ¼
3t0a=2@, we rewrite the condition � � @=�"�� as

ðnA þ nBÞU2 � t20: (4)

This condition is always satisfied for weak adatom poten-
tial U � t0.
This argument can also be applied, with a slight modi-

fication, to the case of strong adatom potential, U � t0.
This can be done by replacing U in Eq. (3) by a suitably
defined T matrix, see Eq. (8). This again yields the condi-
tion (4), which is satisfied at low enough adatom coverage.
Furthermore, as numerical results presented in Fig. 2 show,
the gap persists even at higher adatom concentration,
ðnA þ nBÞU2 � t20.
Of course, strictly speaking, the DOS inside the gap

must be nonzero. However, since the states deep in the
gap can arise only due to relatively large fluctuations of
disorder, their contribution to the DOS is exponentially
small. To analyze this quantitatively, we shall focus on the
simplest case of a weak potential, U � t0, assuming that
all adatoms reside on the A sublattice. We model the effect
of disorder by the Hamiltonian (1) with the fluctuating gap
�ðrÞ ¼ uA ¼ nAðrÞU, and zero uB.
This problem can be mapped on the well studied prob-

lem of the DOS below the band edge in a disordered
semiconductor [27,28]. Starting with the equations "c A ¼
�ðrÞc A þ v0pþc B, "c B ¼ v0p�c A, and eliminating the
component c B, we obtain an eigenvalue equation

ð"�ðrÞ � v2
0r2Þc AðrÞ ¼ "2c AðrÞ: (5)

For " near the upper band edge, given by the disorder-

averaged potential, �� ¼ nAU, we expand in �" ¼ "� ��
to bring the eigenvalue equation to the form of the
Schrödinger equation for a massive nonrelativistic particle:

��c AðrÞ ¼
�
�r2

2m
þ �uðrÞ

�
c AðrÞ; m ¼

��

2v2
0

; (6)

where �uðrÞ ¼ �nAðrÞU is the fluctuating part of the gap
�ðrÞ. We treat the long wavelength fluctuations of �ðrÞ as
Gaussian with the two-point correlation function
h�uðrÞ�uðr0Þi ¼ U2h�nAðrÞ�nAðr0Þi ¼ ��ðr� r0Þ, where
� ¼ U2nA=n0, as appropriate for delta-correlated adatom
positions. In this case the DOS for the problem (6) decays
exponentially away from the band edge [28],

�ð0< " & �uAÞ / expð�cj��j=�Þ; � ¼ �m (7)

with c a constant of order one. Estimating the energy scale
�, we see that, at low coverage nA � 1, it is much smaller

than the gap width: � ¼ �m ¼ U2nA�
2n0v

2
0

� �2

t20
U � �. There-

fore we conclude that the DOS is exponentially small
within the gap. This is consistent with the results of our
simulation, shown in Fig. 2, in which some smearing of the
DOS was observed at the gap edge; however, no states
were found deep inside the gap for all of the 160 disorder
realizations which we analyzed.
An analytic approach to analyze transport properties,

such as disorder scattering and conductivity, can be devel-
oped using a self-consistent T-matrix approximation

FIG. 3 (color online). Two phases of adatoms on graphene:
disordered (a), where adatoms are randomly distributed over two
sublattices of the hexagonal lattice, A and B, and ordered (b),
where adatoms preferentially occupy one of the sublattices. The
adatoms residing on sublattice A (B) are shown in red [medium
gray] (green [light gray]). Schematics of the energy spectrum in
the two phases, are also shown. In the ordered phase, the
sublattice symmetry breaking leads to a band gap.
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(SCTA) [26]. In the model (2), the T matrix of an individ-
ual adatom has a resonant form [29],

T0ð"Þ¼ �v2
0

"lnðiW="Þþ�
; �¼�v2

0

~U
; ~U¼ U

n0
; (8)

where W � 3t0 is the bandwidth, and the parameter �
determines the energy of the resonance, "0 lnW=j"0j ¼
��. We note that the description of adatoms by an on-
site potential is equivalent to the model which describes
adatom states in terms of a localized level hybrid-
ized with the graphene continuum [22], since the form of
the T matrix at low energies is the same in both
approaches.

We calculate disorder-averaged Greens functions using
the self-consistent approach [26]. The Greens functions
are then used to extract the density of states, �ð"Þ ¼
� 1

� ImTrGð"þ i0Þ. The resulting energy dependence of

the DOS is shown in Fig. 1. The main features, such as the
gap opening for imbalanced A=B occupancies, accompa-
nied by the shift of electronic states into the resonance peak
of a single adatom, are in agreement with our numerical
results. The DOS is then used to evaluate the total energy
as a function of the chemical potential, Eð�Þ ¼R�
�1 "�ð"Þd". The change in the electronic energy due to

sublattice ordering, �E ¼ EnA¼nB � EnA�nB , depends on

� as shown in Fig. 1 inset. The sublattice-ordered state is
stabilized for positive dopings �> 0.

The gap opening and its character reveals itself in trans-
port measurements, since the temperature dependence of
conductivity is activation-like in systems with an intrinsic

band gap, 	 / e��=kBT , but has a variable-range hopping
behavior of the Mott or Efros-Shklovskii form for systems
with a transport gap. In addition, sublattice ordering sup-
presses scattering, which leads to an increase in conduc-
tivity for electron doping above or below the gap.
Conductivity of the system, evaluated using the SCTA
approach [30], is given by an expression

	ð�Þ � 2e2

�3
@
3

�2ln2W=j�j
v2
0ð~nA þ ~nBÞ

þ e2

�2
@

ðnA � nBÞ2
ðnA þ nBÞ2

ln
W

j�j ;
(9)

which is valid far outside the gap region, j�j � �, j"0j.
The quadratic dependence on � in the leading term is
characteristic for resonant scattering [31]. The second
term in Eq. (9) describes the increase in conductivity due
to sublattice imbalance. Observation of such an increase
can serve as a hallmark of adatom ordering.

An experimental approach to realizing the sublattice-
ordered state depends on the lateral mobility of adatoms. If
the adatoms remain mobile below the ordering temperature
Tc ¼ 2�E [26], the ordering will occur via a conventional
Ising-type phase transition. In this case, a rapid cooldown
following ordering may be needed to prevent adatom clus-
tering [23].However, if the mobility is quenched at tem-
peratures T > Tc, the system must be annealed at T & Tc

to achieve ordering and a gap opening. Since only a small
part of adatom’s entropy needs to be removed for sublattice
ordering (see Fig. 3), it should take only a few hops by each
adatom to transition into the gapped state.
In summary, the interaction between adatoms in func-

tionalized graphene can drive sublattice ordering via a
Peierls-type transition. The band gap, opened by Bragg
scattering of electron waves on the sublattice modulation,
is immune to the positional disorder of the adatoms, with
the density of localized states inside the gap being expo-
nentially small. The gapped state is shown to be stable in a
wide range of electron doping.
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