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By quantum Monte Carlo simulation of a realistic multiorbital Anderson impurity model, we study the

spin-orbit interaction (SOI) of an Fe impurity in Au host metal. We show, for the first time, that the SOI is

strongly renormalized by the quantum spin fluctuation. Based on this mechanism, we can explain why the

gigantic spin Hall effect in Au with Fe impurities was observed in recent experiments, while it is not

visible in the anomalous Hall effect. In addition, we show that the SOI is strongly renormalized by the

Coulomb correlation U. Based on this picture, we can explain past discrepancies in the calculated orbital

angular momenta for an Fe impurity in an Au host.
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When a magnetic impurity with d orbitals is put into a
normal metal with s- or p-conduction bands, it forms a
virtual bound state hybridized with the conduction states,
leading to a broadening with width � (hybridization en-
ergy) which is typically of the order of eV. This energy
scale competes with the Coulomb energy U between the
electrons in the d orbitals, which is also of the order of eV.
The latter tends to produce the spin moment, while the
former induces quantum fluctuation of that spin moment,
leading to the spin singlet. The competition between these
two interactions defines the time scale, or equivalently the
energy scale, of the quantum spin fluctuation, i.e., the
Kondo temperature TK, which can be much lower than
both � and U [1]. In the language of the renormalization
group, this is described by the energy-dependent scaling of
the various operators. This means that even a weak inter-
action can be amplified in the low energy or temperature
scale and compete with the much larger energy scale due to
the correlation U.

In real systems, the d orbitals have fivefold degeneracy,
and these orbital degrees of freedom have often been
neglected in the analysis of the experimental results. The
reasoning is that either the crystal field splitting �" is
much smaller than the hybridization energy � or that it is
in the limit with �" much larger than the Kondo tempera-
ture TK. However, the naive comparison between the bare
interaction strengths is dangerous since these are scale-
dependent running coupling constants. Similar nontrivial
behavior can also be expected for the relativistic spin-orbit
interaction.

Orbital degrees of freedom in the impurity scattering
lead to intriguing phenomena such as the anomalous Hall

effect (AHE) and the spin Hall effect (SHE). A charge
current perpendicular to the applied electric field is pro-
duced in ferromagnetic metals (AHE), while a spin current
rather than a charge current is induced in semiconductors
and metals without magnetism (SHE). An extrinsic mecha-
nism of these two effects arises from the skew scattering,
i.e., spin-dependent deflection of the scattered electrons
due to the spin-orbit interaction. It has been shown in the
case of the AHE that the resonant skew scattering due to
the virtual bound d states leads to a large Hall angle, of the
order of 0.01 [2], compared with the typical value of 10�3.
In the AHE, the spin fluctuation is quenched, owing to the
ferromagnetism or the external magnetic field, and the ratio
of the spin-orbit interaction � and � basically determines
the Hall angle. On the other hand, in the SHE, the spin
fluctuation is active and the Kondo physics can be relevant
to the resonant skew scattering. Therefore, a crucial ques-
tion is whether the Kondo effect and quantum spin fluc-
tuation can produce an even larger spin Hall angle
compared with the AHE.
An important clue to this question comes from an ex-

periment by Seki et al. [3] on Au=FePt, in which a spin
Hall angle of 0.114 was obtained. Motivated by this ex-
periment, some of the present authors studied the Fe im-
purity in Au by a first-principles calculation [4]. The
Kondo effect of Fe impurities is a historic problem, with
a low TK around 0.4 K [5], high electric resistance at room
temperature [1], and an AHE with Hall angle of the order
of 0.01 [2]. However, a simple fivefold degeneracy of the
orbitals has been assumed to analyze the experiments. In
Ref. [4], on the other hand, the orbital-dependent Kondo
effect of Fe in Au was proposed to explain the nature of the
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experimentally observed giant spin Hall signals [4]: It was
argued that the eg orbitals of Fe are in the Kondo limit and

t2g orbitals are in the mixed-valence region. The enhance-

ment of the spin-orbit interaction by electron correlation in
the t2g orbitals leads to the giant spin Hall effect. However,

this proposal has been challenged theoretically by Ref. [6],
which suggests an effective 3-channel Kondo model, in-
volving local and band electrons of t2g symmetry, and also

experimentally by the x-ray magnetic circular dichroism
(MCD) [7], which obtained a rather small value of the
orbital angular momentum in contrast to the large value
calculated in Ref. [4].

In order to resolve this confusing situation and quantify
the mechanism for the enhanced spin Hall effect, it is
essential to treat the quantum fluctuations of the spins
and orbitals systematically. This is impossible in the first-
principles calculation, which assumes ordered spin and
orbital moments. In this Letter, we overcome this difficulty
by using the Hirsch-Fye quantum Monte Carlo (QMC)
simulation [8], combined with the density functional the-
ory (DFT) [9,10], to study the renormalization due to
correlation effects. First, a single-impurity, multiorbital
Anderson model [11] is formulated within the DFT for
determining the host band structure, the impurity levels,
and the impurity-host hybridization. Second, the magnetic
behaviors of the Anderson impurity at finite temperatures
are calculated by QMC.

The single-impurity, multiorbital Anderson model is
defined as

H ¼ X
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where cyk�� (ck��) is the creation (annihilation) operator of
the conduction electron with wave vector k and spin � in

the band �, dy�� (d��) is the creation (annihilation) opera-

tor of the localized electron at the impurity site with orbital

� and spin �, and n�� ¼ dy��d��. The host energy band

��ðkÞ, the impurity energy levels ��, and the impurity-host

hybridization V�k�, as the one-body problems, can be

properly obtained by the DFT calculations. U (U0) is the
on-site Coulomb repulsion within (between) the orbitals of
the impurity, and J is the Hund coupling between the
orbitals of the impurity. These many-body interactions
can be exactly treated by the QMC calculations, and thus
it becomes possible to accurately study the quantum fluc-
tuations of the spins and orbitals of the impurity.
Considering the parameters used in the previous calcula-
tions for Fe in Au [4], and the relationship U ¼ U0 þ 2J
[12], in our following QMC calculations, we use the values
of U ¼ 5 eV, J ¼ 0:9 eV, and U0 ¼ 3:2 eV for most

cases, but we shall vary the values for a few cases in order
to clarify the role of correlations and reconcile with past
calculations.
Our DFT calculations are done by the code QUANTUM-

ESPRESSO [13]. To calculate the impurity-host hybridiza-

tion, we consider the supercell Au26Fe, where the
exchange-correlation interactions are described by the
Perdew-Zunger local density approximation (LDA), and
the electron-ion interactions are represented by the Rabe-
Rappe-Kaxiras-Joannopoulos ultrasoft pseudopotentials.
(See Ref. [14] for details.)
Figure 1(a) shows the hybridization between � orbitals

of an Fe impurity and an Au host, where the hybridization
matrix element has the form of V�k� � h’�jH0j��ðkÞi.
H0 is the one-particle part of Eq. (1),’� is the � state of the

Fe impurity, and ��ðkÞ is the Au host state with wave
vector k and band index �. (See Ref. [14] for details.) It is
observed that, at the � point (k ¼ 0), the hybridization
value of the � ¼ egðz2; x2 � y2Þ orbitals of the Fe impurity

is smaller than that of the � ¼ t2g (xz, yz, xy) orbitals.

Based on the above DFT/LDA calculation, we can de-
termine approximate impurity levels �� ¼ �1:9 eV for

� ¼ eg (z2, x2 � y2) and �� ¼ �1:8 eV for � ¼ t2g (xz,

yz, xy) with zero Fermi energy, where the Coulomb terms
included in the LDA calculations have been subtracted as
in Refs. [15,16]. The crystal field splitting �" ¼ 0:1 eV is
in agreement with the previous LDA calculations [4,6].
To study the renormalization due to the correlation effect

for (i) the crystal field splitting and (ii) the relativistic spin-
orbit interaction, the magnetic behaviors of Eq. (1) are
calculated by the Hirsch-Fye QMC simulation for the
infinite host system [8]. Owing to calculation constraints,
we simplify to a three-orbital model with one eg and two
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FIG. 1 (color online). (a) Hybridization between the � orbitals
of an Fe impurity and an Au host. We show the LDA result
including five d orbitals. (b) Temperature dependence of the
square of the magnetic moment hðMz

�Þ2i, (c) the temperature

times susceptibility T��, and (d) the occupation number hn�i of
the � orbitals of the Fe impurity. (b)–(d) are the QMC results
including three d orbitals. See text for details.
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t2g orbitals, which captures the essential physics. The eg
orbital is arbitrarily chosen as z2, and the two t2g orbitals

are chosen as p1 and p�1, where the notation corresponds
to the transformational properties of t2g orbitals equivalent

to effective p orbitals [17]: p1 � � 1ffiffi
2

p ðxz� iyzÞ, p0 �
�ixy, and p�1 � � 1ffiffi

2
p ðxzþ iyzÞ. The following results

are obtained with more than 105 Monte Carlo sweeps and
the Matsubara time step �� ¼ 0:25.

Figures 1(b)–1(d) show the temperature dependence of
the square of the magnetic moment hðMz

�Þ2i, the tempera-

ture times susceptibility T��, and the occupation number

hn�i, which are defined as Mz
� ¼ n�" � n�#, �� ¼R�

0 d�hMz
�ð�ÞMz

�ð0Þi, n� ¼ n�" þ n�#, respectively, and

the impurity levels �� ¼ �1:9 (� ¼ z2) and�1:8 eV (� ¼
p1, p�1) are used. It is found that the eg (t2g) orbital has a

larger (smaller) magnetic moment, a much larger (smaller)
susceptibility with a much smaller (larger) Kondo tempera-
ture, and a larger (smaller) occupation number. In addition,
if we repeat the QMC calculation with the degenerate
impurity levels by hand, �� ¼ �1:85 eV for � ¼ z2, p1,

and p�1, nearly the same behaviors are observed. Thus it is
clear that the orbital-dependent Kondo effect comes
mainly from the renormalization of the impurity-host hy-
bridization by correlations.

Next, we study problem (ii)—the renormalization of the
relativistic spin-orbit interaction due to the correlation. For
simplicity, we consider only the z component,

Hso¼ð�=2Þð‘z�zÞ; ‘z�z�n2" �n2# �n3" þn3#; (2)

where ‘z is the 3� 3 z component of the angular moment
matrix of ‘ ¼ 1, and �z is the 2� 2 z component of the
Pauli matrix. � ¼ 2 (3)denotes the p1 (p�1) orbital. We
add Eq. (2) to Eq. (1), where the parameters in Eq. (1) are
taken as the same values of Figs. 1(b)–1(d). For an Fe atom,
the realistic value of the spin-orbit interaction is � ¼
75 meV [18]. We also show the results with the smaller
value of � ¼ 40 meV for comparison. Considering that the
value of � is 2 orders of magnitude less than that of
impurity energies ��, it is not surprising that the tempera-

ture dependence of the square of the magnetic moment
hðMz

�Þ2i, the susceptibility T��, and the occupation number

hn�i are nearly the same as those of Figs. 1(b)–1(d). In

contrast, as displayed in Fig. 2, a nonzero spin-orbit corre-
lation function h‘z�zi appears when the spin-orbit interac-
tion within the t2g orbitals of the Fe impurity is included.

At temperature T ¼ 360 K, the lower limit of our present
calculations, we have h‘z�zi ffi �0:44 with � ¼ 75 meV,
and h‘z�zi ffi �0:3 with � ¼ 40 meV.

To compare the QMC results with the experiment, we
calculate the spin Hall angle 	s as follows. Since we
consider only two t2g orbitals with the z component of

the orbital angular moment ‘z ¼ �1, the spin-orbit inter-
action within the t2g orbitals gives rise to the difference in

the occupation numbers between the parallel (nP) and

antiparallel (nAP) states of the spin and angular momenta.
These occupation numbers are related to the phase shifts

P and 
AP, respectively, as nPðAPÞ ¼ 
PðAPÞ=�. These

quantities can be estimated as

�h‘z�zi¼
P�
AP; �hn2iþ�hn3i¼
Pþ
AP; (3)

which are given in Figs. 2 and 1(d) , respectively. Putting
h‘z�zi ¼ �0:44 for � ¼ 75 meV, and hn2i ¼ hn3i ¼
0:65, we obtain 
P ¼ 1:35 and 
AP ¼ 2:73. Taking into ac-
count the estimate 
1 ffi 0:1 of the phase shift for p-wave
scattering, and applying the equation [4] 	s ¼
6 Im½ðe�2i
1 � 1Þðe2i
P � e2i
APÞ�=½25 � 15 cos2
P �
10 cos2
AP�, the spin Hall angle is thus obtained as 	s ffi
0:055, comparable to that observed in recent experiments.
To further understand how correlations renormalize the

effective relativistic spin-orbit interaction, we will now
vary the correlation energy and the spin polarization, while
keeping the temperature T ¼ 360 K and spin-orbit inter-
action � ¼ 75 meV fixed.
Effect of correlation U.—For each U, we keep J=U ¼

0:9=5 and U ¼ U0 þ 2J. In Fig. 3 with hðMz
2 þMz

3Þ=2i ¼
0, we see that the spin-orbit correlation function jh‘z�zij
dramatically decreases as U decreases. This demonstrates
clearly how the correlation U renormalizes the relativistic
spin-orbit interaction. The results also explain past discrep-
ancies in the calculated orbital angular momenta for an Fe
impurity in an Au host: A large value is calculated with
U ¼ 5 eV [4], while much smaller ones are obtained with
U ¼ 3 or 2 eV [6,19]. The virtual bound states of t2g have

majority and minority parts, whose contributions to h‘z�zi
are opposite in sign. IncreasingU will push up the minority
part away from the Fermi energy, decrease its contribution
to h‘z�zi, and hence increase the total h‘z�zi.
Effect of spin polarization.—To see clearly the effects of

quantum fluctuations, it is instructive to study the effects of
polarizing the Fe impurity spin, which can quench quan-
tum fluctuations of the spins and orbitals. We apply a
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FIG. 2 (color online). Temperature dependence of spin-orbit
interactions for an Fe impurity in an Au host. The parameter � in
Eq. (2) is taken as a realistic 75 meV [18], and as 40 meV for
comparison.
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magnetic field h by hand on the orbitals 1ðz2Þ, 2ðp1Þ, and
3ðp�1Þ of the Fe impurity,

Hf ¼ �hðn1" � n1# þ n2" � n2# þ n3" � n3#Þ; (4)

where h may be of a fraction of eV in order to polarize the
spins at the temperature of 360 K. We add Eq. (4) to the
previous Hamiltonian with the parameters in Eq. (1) taken
to be the same as in Fig. 2. It is found that, in Fig. 3 with
U ¼ 5 eV, when h is set up to 0.8 eV to make the spins
hMz

�i of � ¼ 1ðz2Þ, 2ðp1Þ and 3ðp�1Þ gradually polarize

near the saturated value 1, the spin-orbit correlation func-
tion jh‘z�zij gradually decreases to 0. Thus, the quantum
fluctuation of the spin is crucially important in producing
an even larger spin Hall angle than the Hall angle of the
AHE. What happens is that the quantum fluctuation of the
spin leads to the motional narrowing of the spin-orbit
coupled virtual bound states, reducing the hybridization
energy with the conduction electrons and hence the en-
ergy width�. So, the Hall angle will increase with decreas-
ing � [2].

Phase diagram.—Combining the above two parameters,
our QMC results for the spin-orbit correlation function
h‘z�zi are noted as squares with solid lines in Fig. 3. In
the phase diagram plane of the correlation U to the spin
polarization hðMz

2 þMz
3Þ=2i, as also noted in Fig. 3, the

different colors note the different values of h‘z�zi. It is
seen that the areas with large spin-orbit correlation should
possess strong correlation energy U and weak spin polar-
ization. The measurement of the orbital angular momen-
tum by x-ray MCD involves the application of a sum rule
for atomic wave functions: In order to eliminate interfer-
ence between different impurities, it is necessary to polar-
ize with an external magnetic field at low temperatures [7].
The spin Hall angle measurement [3] was done in a spin-
unpolarized state and at room temperature. From our phase

diagram in Fig. 3, it is suggested that the orbital angular
momentum in a spin-polarized state could be much smaller
than that in a spin-unpolarized state. We emphasize that
this phase diagram is obtained for temperatures compa-
rable to room temperature, as is relevant for spin Hall
applications; for quantitative comparison of very low tem-
perature measurements, such as x-ray MCD and phase
decoherence, the scales can be renormalized.
To conclude, we have studied the SHE for an Fe impu-

rity in an Au host by QMC simulation of a multiorbital
Anderson impurity model. Our phase diagram with respect
to correlation and spin polarization shows that large spin-
orbit correlations occur for strong correlation U and weak
spin polarization, which, in principle, may resolve the
current, somewhat confusing, situation of experiments
and calculations. More generally, we can, for the first
time, quantify an essential difference between the AHE
and the SHE.While we have focused on the specific case of
Fe in Au, the results suggest a more general mechanism,
and constraints on parameters, for obtaining a large SHE
by impurities.
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FIG. 3 (color). For an Fe impurity in an Au host, we show the
spin-orbit interaction h‘z�zi as a function of correlation energy
U and spin polarization hðMz

2 þMz
3Þ=2i. The QMC results of

h‘z�zi are shown as squares with solid lines. In the phase
diagram plane of U to hðMz

2 þMz
3Þ=2i, the different colors

denote the different values of h‘z�zi. Here, T ¼ 360 K and � ¼
75 meV are fixed.
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