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The existence of a well-defined yield stress, where a macroscopic crystal begins to plastically flow, has

been a basic observation in materials science. In contrast with macroscopic samples, in microcrystals the

strain accumulates in random bursts, which makes controlled plastic formation difficult. Here we study by

2D and 3D simulations the plastic deformation of submicron objects under increasing stress. We show

that, while the stress-strain relation of individual samples exhibits jumps, its average and mean deviation

still specify a well-defined critical stress. The statistical background of this phenomenon is analyzed

through the velocity distribution of dislocations, revealing a universal cubic decay and the appearance of a

shoulder due to dislocation avalanches.
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Understanding the nature of irreversible plastic defor-
mation is a crucially important issue in current research in
materials sciences. It has been known for a long time that
macroscopic size materials begin to yield at a certain stress
level, depending on several material parameters. On mac-
roscopic scales the flowing regime is traditionally de-
scribed by constitutive laws, envisaging plasticity as a
smooth and steady flow in both time and space. In the
past decade, however, a completely new picture has
emerged. By analyzing the emitted sound waves during
deformation, it was observed that plastic deformation is
characterized by intermittent bursts of activity [1,2].
Furthermore, recent compression tests carried out on Ni
microcrystals [3,4] revealed that, if the specimen size is in
the range of several �m and below, discontinuous defor-
mation occurs in strain bursts due to the sudden motion of
dislocations. The size distribution of the dislocation ava-
lanches decreases by a universal power law with exponent
1.5. The distribution was recovered by experiments [5,6],
by 2D and 3D discrete dislocation dynamics simulations
[1,7,8], and by analytical modeling [9,10]. These findings
indicate that intermittent dislocation avalanches are an
intrinsic feature of the plasticity of crystals not affected
by the details of the deformation.

In nanoscale applications this behavior has two impor-
tant consequences. First, the increased relative size of the
fluctuations makes it difficult to control the plastic forming
process [7]. Second, at small specimen sizes the yield
stress is not well defined any more. According to the
conventional definition, the yield stress of a specimen is
the external stress at 0.2% plastic strain. If the specimen
size is below several �m, then, as a result of strain fluctu-
ations, this value varies specimen by specimen [5] prohib-
iting a material-specific yield stress definition. One can
thus raise the question of whether a new physical definition
can be given for the yield stress at this size.

Similar phenomena are observed in completely different
physical systems, too. Granular materials, such as sand
piles, also exhibit yield stress, and at higher external driv-
ing forces deformation occurs in distinct avalanches [11].
Plate tectonics [12], fracture dynamics [13], and vortex
lattices in superconducting films [14] are further examples
of such processes. The common characteristics of these
systems are marginal stability, power-law distributions
without characteristic length or time scales, and driving
forces that vary much slower than the internal relaxation
processes [15]. For such problems the term ‘‘self-organized
criticality’’ is widely used [16,17].
Although irregular plastic response of submicron crys-

talline materials is by now conceived as a self-organized
critical phenomenon [4,7,15,18], a physical understanding,
that is, a phenomenology for plastic flow based on statis-
tical properties of strain avalanches, is still lacking. In this
Letter we present a statistical analysis of the fluctuating
stress-strain response of individual specimens and of the
velocity distribution PðvÞ of dislocations. Our main prop-
osition is that the PðvÞ holds the key to many empirical
aspects of the flow. It exhibits a specific transition at the
onset of material yielding seen on the average stress-strain
characteristics.
The dynamics of dislocations is commonly assumed

overdamped [19]. That is, the glide velocity is proportional
to the glide component of the acting Peach-Koehler force
Fg per unit length: v ¼ B�1Fg, where B is the drag coef-

ficient of the dislocations. Here Fg ¼ b�rs þ Fs, where b is

the magnitude of the Burgers vector and �rs is the sum of
the external and local resolved shear stress, generated by
the other dislocation segments via long-range interactions,
while Fs denotes the short-range forces related to disloca-
tion self-interaction and junction formation [19].
To study the submicron plastic response by discrete

dislocation dynamics we simulated in 3D several realiza-
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tions of the yielding of an L ¼ 0:46 �m edge size alumi-
num cube oriented for single slip and compressed with
constant stress rate and free side boundaries [19]. The
initial dislocation density was 8� 1013 m�2. Part of a
typical configuration is shown in Fig. 1(a) (for a movie,
see [20]). Motivated by the fact that in 2D the avalanche
size distribution was found to be similar to the 3D case
[1,10], simulations on 2D systems consisting of straight
parallel edge dislocations, oriented for single slip with
periodic boundary conditions, were also performed. A
typical 2D system is seen in Fig. 1(b) [20]. Although
several 3D ingredients, such as dislocation multiplication,
junctions, and forest dislocations, are absent from the 2D
system, there is reason to expect that the essential features
governing strain avalanches are included in the 2D case.
Therefore, besides the much lower computational cost, an
important advantage of the 2D simulations is that the role
of long-range interactions in irregular plastic yielding is
isolated, so its effects can be better studied.

The plastic strain responses measured during individual
stress-controlled 3D simulations are seen in Fig. 2(a) (thin
lines). The obtained stress (�ext) versus plastic strain (�)
curves exhibit random steps, just like the ones measured
experimentally by microcrystal deformation [3,4]. The
plateaus clearly indicate strain bursts, resulting in different
patterns for different samples excluding any practical defi-
nition of a threshold value. If, however, we average over
the more than 100 independent realizations of submicron
samples, the cavalcade of random staircases smoothens
into a continuous curve, the thick line of Fig. 2(a).
Moreover, there is a threshold stress value �c �
65� 10 MPa marking the end of the pure power region
[inset of Fig. 2(a)]. The onset of the flow is even more
evident in the deformation rate _� versus external stress
relation, plotted in Fig. 2(b), undergoing a quite sharp
transition at the same �c. Furthermore, the root mean
square fluctuations of plastic strain values at given stresses
[Fig. 2(c)] sharply increase for �ext > �c.

Remarkably, in 2D we obtain very similar results. For
each of the 5000 realizations, 64-64 opposite dislocations
of a single glide axis were randomly placed initially. After
letting the system relax at zero external stress, stress-
controlled loading was applied. In contrast to 3D, in 2D
all the material parameters can be scaled out by introduc-
ing natural units as v0 ¼ ffiffiffiffi

�
p

B�1Gb2 for velocity, �0 ¼
b

ffiffiffiffi
�

p
for plastic strain and �0 ¼ Gb

ffiffiffiffi
�

p
for stress, where �

is the total dislocation density and G is a combination of
elastic moduli [21]. As in 3D, the individual curves are
steplike [Fig. 3(a)], but again a relatively sharp transition
point can be identified on the external stress dependence of
the average plastic strain [inset of Fig. 3(a)], on the defor-
mation rate _� [Fig. 3(b)], and also on the plastic strain
fluctuation [Fig. 3(c)]. For 128 dislocations the critical
stress obtained is �c � ð0:17� 0:02Þ�0. The outstanding
similarity between the strain responses of 2D and 3D
systems observed in Figs. 2 and 3 suggests that the sim-
plified 2D case, containing only the long-range interactions
between dislocations, is able to capture the general features
of submicron plastic flow. We can conclude that not only is
there in the statistical sense a smooth stress-strain curve for
submicron sizes, but also that several corroborating indi-
cators show the existence of a quite sharply defined thresh-
old stress, presumably a material characteristic for a given
specimen size and initial dislocation density.
More can be learned from the detailed analysis of the

dislocation velocity distribution PðvÞ, done in 2D. We
averaged over 5000 realizations the distribution of the
absolute velocities of dislocations, at different load levels
[see Fig. 4(a)]. Our main observation is that the tail of PðvÞ
always decays as

PðvÞ � Av��; (1)

with exponent � � 3� 0:02.
The theoretical explanation of the cubic decay can be

obtained under some natural assumptions about the corre-
lation of dislocations. Previously it was shown that the

(a) (b)

FIG. 1 (color online). Dislocation configurations obtained by
2D and 3D simulations. (a) Snapshot of a 3D simulation.
Different shades (colors) indicate dislocations on the 12 different
slip systems. (b) Snapshot of a 2D system consisting of straight
parallel edge dislocations with Burgers vector (� b; 0; 0), the
sign distinguished by different shapes (colors).
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FIG. 2 (color online). Plastic responses in 3D. (a) Stress (�ext)
versus plastic strain (�) curves of individual simulations (thin
lines). The thick line is the average over realizations. The hori-
zontal line marks the suggested critical yield stress. Inset shows
the averaged curve on a log-log plot. (b) Mean deformation rate
versus external stress. (c) Root mean square of strain fluctuations
versus stress. Note that stress and time are equivalent.
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distribution of internal elastic stresses at a random location
has a cubic tail [22]; presently, however, we are interested
in the stress (proportional to the velocity) at the positions of
dislocations. We give a simplified derivation first and then
discuss its adaptation to our case. The cumulant generating
function �ðqÞ of the stress distribution Pð�Þ is given by

e�ðqÞ ¼
Z

d�eiq�Pð�Þ ¼ heiq
P

N
n¼1

�ðrn�r0Þi; (2)

where the average is taken over the normalized joint dis-
tribution of N þ 1 dislocations fðr0; . . . ; rNÞ, and �ðrÞ ¼
r�1 cos’ cos2’ is the stress field generated by a disloca-
tion, in appropriate units, using polar coordinates. The
large � behavior is determined by small q’s, so we keep
the leading term in the Mayer cluster expansion

�ðqÞ � N
Z
ðeiq�ðrÞ � 1Þfðrj0Þd2r; (3)

where the conditional distribution fðrj0Þ appears. For r <
q�, where � is small but fixed, the phase factor oscillates

fast so the integral gives at most an order q2 contribution, if
f is nonsingular. Setting the average of � to zero, the
leading term comes from expanding in q as

�ðqÞ � �N

2
q2

Z
r>q�

�2ðrÞfðrj0Þd2r � �
�A

2
q2 lnq; (4)

where �A ¼ N
R
2�
0 cos2’cos22’fðr ¼ 0; ’j0Þd’, provided

the small-distance limit of fðr; ’j0Þ depends only on the
angle. Note that 1=f is of the order of area, so Nf is
nonextensive. As the final step in the derivation one
straightforwardly shows that the asymptote Pð�Þ � �A��3

yields by (2) the q dependence in (4). We mention that the
cubic decay is a typical feature of x-ray line profiles [23].
Now we need to refine the above picture by the follow-

ing considerations. First, there are two types of dislocations
with � Burgers vectors, so pair correlations between all
types have to be introduced, as it was worked out in [22].
Second, we should realize that the equilibrium correlation
feqðrj0Þ may diverge for small distances [24]. However,

since dislocations do not move, the stress distribution is the
Dirac delta centered at the origin, so �eqðqÞ � 0. Thus we

can use in (4) the time-dependent deviation from the
equilibrium correlation. Note that the mathematical struc-
ture of the problem is similar to [22] and details will be
published elsewhere. In conclusion, if the time-decaying
term in the correlation produces a finite amplitude in (4)
then the stress and thus the velocity distribution must have
a reciprocal cubic decay.
Returning to the discussion of the simulations, the pre-

factor A in Eq. (1) was found to depend on the momentary
external stress �ext. According to Fig. 4(b), Að�extÞ also
undergoes a transition. Although the turn is not very sharp,
the asymptotes apparently have different slopes, whose
intersection point again gives �c of Figs. 3(a)–3(c).
In a statistical sense, therefore, �ext > �c corresponds to

the flowing regime, and �c can be considered as a measure
of the strength of the material for a given size. It should be
stressed, however, that in an individual sample consider-
able dislocation motion may occur below �c. For samples
with macroscopic sizes, �c is expected to go over to the
conventional yield stress. Finally, we note that preliminary
investigations suggest a weak rate dependence.
The investigations on the velocity distributions have also

been repeated in 3D. Although in this case only a smaller
ensemble can be afforded and the inherent numerical noise
is much higher, there is a striking similarity between the
3D and the 2D results discussed above. The tail of the
distribution is cubic, and its prefactor increases with the
growing external stress. The emergence of the cubic decay
indicates that its derivation in the 2D single-slip case
actually has a much broader validity. Furthermore, as in
2D, the different distributions separate after a well-defined
point and the small-v part is nearly unaffected by the
external stress.
The next issue to be considered is whether there is any

mark of the avalanche activity on the velocity distribution
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FIG. 4 (color online). (a) Dislocation velocity distributions at
different external stress levels, increasing in the direction of the
arrow. The dotted (blue) line corresponds to �c. (b) The prefactor
Að�extÞ [see Eq. (1)] as a function of the external stress.
(c) Above the yielding transition the velocity spectrum (thick
red line) can be decomposed into the contribution of avalanches
(dotted green line) and that of the quiescent configurations (thin
blue line).
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FIG. 3 (color online). Plastic responses in 2D. Panels (a)–
(c) correspond to Figs. 2(a)–2(c), respectively. Quantities are
in natural units defined in the text.
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of dislocations. In an individual simulation, the system
randomly alternates between quiescent and avalanche
states, distinguished by a threshold (Fig. 5). As Fig. 4(c)
shows it, the tail of the total velocity distribution comes
from systems being in avalanche state, whereas quiescent
states contribute only to the small-v part of PðvÞ. The
superposition of the two convex curves results in the
characteristic ‘‘shoulder’’ in the distribution functions plot-
ted in Fig. 4(a). Our investigations in 3D indicate that there
similar features hold as well. In summary, the velocity
distribution exhibits universality in more than one respect.
First, the low-velocity part of the histogram is nearly
independent of the external load. Second, the exponent of
the decay at large velocities appears to be constantly 3 all
along the loading scenario. Third, the critical yield stress
manifests itself by an upturn in the amplitude of the power
tail, due to increased avalanche weight.

While thus far we have analyzed peculiarities of the
velocity distribution of dislocations, Orowan’s well-known
law states that the plastic strain rate is proportional to the
average dislocation velocity, weighted by the Burgers vec-
tor. So, it is natural to ask what the contribution is of the
distribution tail obtained above, corresponding to ava-
lanches, to the average plastic rate. We found that about
80% of the plastic strain rate is caused by dislocations with
velocities beyond the onset of the shoulder. This implies
that the fast dislocations forming avalanches play a domi-
nant role in the plastic response. Furthermore, approxi-
mately 20% of the strain rate comes from the power-
decaying part, significant for a tail.

We emphasize that small scale dislocation simulations
abound from the past 30 years. On the other hand, experi-
ments were available only on macroscopic plasticity, in
sizes never reached by simulations. In this Letter the two
approaches meet: now that experiments reached down to
submicron level, simulations become more faithful.

Increased computer power made it possible to describe
ensembles never considered before; thus, a statistical
analysis with new conclusions and definition of the yield
stress in small scale specimens could be reached.
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