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A drop of moderate size deposited inside a circular hydraulic jump remains trapped at the shock front

and does not coalesce with the liquid flowing across the jump. For a small inclination of the plate on which

the liquid is impacting, the drop does not always stay at the lowest position and oscillates around it with a

sometimes large amplitude, and a frequency that slightly decreases with flow rate. We suggest that this

striking behavior is linked to a gyroscopic instability in which the drop tries to keep constant its angular

momentum while sliding along the jump.
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There is presently growing interest in the dynamics of
levitating liquids such as in the Leidenfrost effect [1], or in
the situation of delayed coalescence between liquids [2–6].
These conditions arise when a very thin layer of air or
vapor remains trapped at the interface, thus preventing the
liquid from spreading on a solid, or from coalescing with a
free surface of the same liquid. These unusual situations of
nonwetting give rise to surprising liquid dynamics, of great
fundamental interest. One can refer, for instance, to
Poincaré’s figures of equilibrium observed by Aussillous
and Quéré for drops coated with hydrophobic grains rolling
down a solid substrate [7], or to the striking particle-wave
duality evidenced by Couder et al., on drops walking on a
vibrated liquid [3–5].

In the present Letter we consider a different system. A
drop deposited inside a circular hydraulic jump [8–10] is
pushed by the flow against the jump and remains trapped if
its size is not too large [6]. Owing to the liquid motion
inside the jump and inside the drop, a thin layer of air
trapped in between prevents coalescence when the two
liquids are the same. We show that this situation also leads
to a striking dynamical behavior of the drop, that tends to
rotate around the jump. In the special case (considered
here) of a slightly inclined jump, with respect to horizontal,
the drop does not stay static at the lowest equilibrium point
but rather oscillates in a self-sustained way around this
position, the oscillation reaching very high amplitudes
(nearly 180�) without loosing harmonicity. A model de-
scribing this behavior is proposed, based on a gyroscopic
instability: the drop both slides and rotates above the liquid
surface, exchanging friction with it against the air film,
while trying to keep constant its large angular momentum.
Although the connections with this kind of problem are not
obvious, this instability is reminiscent of others encoun-
tered by rotating systems when a slight amount of dissipa-
tion is added to a situation in apparent equilibrium [11].

A picture of the experiment is reproduced in Fig. 1. A jet
of silicone oil (viscosity 20 cS) issued from a vertical tube

of diameter 4 mm, hits the surface of a plate placed 3 cm
below the outlet. The plate inclination � is fixed to 1:0�
0:1�. For this low inclination, the hydraulic jump is ob-
served to be of type I (i.e., unidirectional surface flow), and
to remain nearly circular, in a way comparable to what
occurs for jumps obtained for slightly oblique jets [12].
The radius of the jump increases with flow rate [Fig. 2(a)]
and follows a law similar to those reported in earlier works
for a horizontal plate [6,8,9]. Millimeter sized drops of the
same fluid as the bath are deposited directly inside the
jump. As reported in [6], small enough droplets do not
cross the jump and remain trapped at its contact [Fig. 1],
without coalescing with the flowing liquid. Qualitative
tests were performed with different silicone oils to inves-
tigate the influence of viscosity. For high enough viscos-

FIG. 1. Nearly circular hydraulic jump formed by a vertical
liquid jet of silicone oil impacting a slightly inclined plate. In the
appropriate range of parameters, a drop levitating above the
jump does not stay stationary at the lowest position (arrow). It
enters an oscillatory motion around this position along the jump
perimeter, shown here by superimposing successive frames.
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ities (above 35 cS), the lowest location of the drop in the
circular jump is a stable equilibrium position, but it turns
out that for lower viscosities this position becomes un-
stable. The drop, after a transient, does not remain sta-
tionary at the lowest point but enters a regime of
oscillations around this equilibrium position as suggested
in Fig. 1, with a time period of order 1 s. A typical
oscillatory motion is plotted in Fig. 2(b). It is nearly
harmonic, amplitude and frequency being functions of
the flow rate. The amplitude of the angular motion in-
creases dramatically when flow rate is reduced and can
even reach 2� for small enough flow rates.

For the sake of simplicity, it will be assumed thereafter
that the drop, assimilated to a solid sphere, has two contact
points a and bwith the jump as shown in Fig. 3(a), and that
the contact areas s are both of order �r2, with r the radius
of the drop. As a first stage, only the point a will be taken
into account. The corresponding thickness of the air layer
da, that separates the drop from the flowing liquid entering
the jump, is a key point of the dynamics. This thickness
was not measured, but, as explained in [6], reasonable
orders of magnitude can be obtained by drawing an anal-
ogy with standard bearing theory. Here a scaling argument
is given, that simply replaces this approach. If Ua desig-
nates the liquid velocity when it enters the jump, air is
trapped between the drop and the flowing liquid, and
should flow at a typical velocity Ua inside a gap da. This

will develop a pressure gradient of order �Ua=d
2
a in the air

film, and thus a pressure �rUa=d
2
a where � is the air

dynamic viscosity. Balancing the expected levitation force
of order �r3Ua=d

2
a with the drop weight leads to

da /
�
�Ua

�g

�
1=2

; (1)

where � is the mass density of liquid. For a velocity Ua ¼
15 cm=s deduced from the fluid height in front of the jump,
this estimate is of order 18 �m and is consistent with the
estimate of 14 �m obtained in [6], while the minimum
thickness expected to observe coalescence is approxi-
mately 200 nm [3].
A possible interpretation of the fact that the lowest drop

position becomes unstable, and of the occurrence of this
oscillatory motion is as follows. First, because of the
friction between the liquid bath and the drop (through the
thin air film), the drop will never remain static and should
develop a sizable rotational motion. This effect is sug-
gested in Fig. 3(a), in which the angular velocity of the
drop defined in a plane containing the axis of symmetryOz
reads ��. Assuming that the drop and the flowing film, of
velocity Ua, exchange a classical shear stress of approxi-
mate value � ¼ ��½Ua þ r���=da, the evolution equa-
tion for �� reads Jðd��=dtÞ ¼ ��ðrs=daÞ½Ua þ r���,
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FIG. 3 (color online). (a) Sketch of the drop and fluid motion
expected in a radial vertical plane containing the jump central
axis. The drop is rotating very fast because of the shear stress
transmitted across the air film. (b) Principle of the instability
viewed in three dimensions. The drop, when pushed from the
lowest point of the jump, tries to keep constant its angular
momentum, which develops an active radial component of the
rotation rate vector that tends to amplify the drop displacement.
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FIG. 2 (color online). Measured for a plate inclination of � �
1:0� 0:1�: (a) Radius of the hydraulic jump (circle), upstream
(square), and downstream (triangle) fluid heights around the
jump, versus flow rate. (b) Typical law �ðtÞ for the drop motion,
� being the drop angular position defined with respect to the
lowest point of the jump (unstable equilibrium position). The
line is a fit with a cosine function.
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where J ¼ ð2=5Þmr2 is the moment of inertia of the drop of
mass m. This equation can be rewritten as

�a
d��

dt
þ�� ¼ �Ua

r
; (2)

where the time constant reads �a ¼ ð8=15Þ�rda=� for a
spherical drop. Typically, a drop of radius r ¼ 1:3 mm,
levitating above a jump of velocity Ua ¼ 16 cm=s, on an
air film of thickness da ¼ 18:5 �m, reaches a rate of 20
rotations per second in a typical time of order �a that is
comparable to the period of the oscillations. If for some
reason the rotating drop is moved from the lowest position
in the jump to an out-of-equilibrium position, the angular
displacement being called � [see Fig. 3(b)], the drop will
try to keep constant its angular momentum L ¼ J�. This
will develop a radial component of the rotation rate vector
suggested in Fig. 3(b), of amplitude �r ¼ �� sin�, that
will be propulsive, and that will tend to amplify the drop
displacement. The propulsive force f ¼ �ðs=daÞðr�rÞ has
to be compared with a gravity restoring force p ¼
mg sin� sin�. The lowest drop position is unstable when

�
s

da
Ua > mg sin� (3)

or, equivalently with the relationships s � �r2 and m ¼
ð4=3Þ��r3, when

�Ua

�grda sin�
* 1: (4)

With the orders of magnitude introduced in the foregoing,
this ratio is of order 1 for an air film of da ¼ 18:5 �m and
even 10 for a thinner film of thickness 1 �m, indicating
that the viewpoint adopted here seems to be consistent
though it is quite sensitive to the air film thickness.

Having recognized a possible instability mechanism, a
more complete investigation is needed, to check whether or
not this instability may lead to stationary oscillations, and
in that event, to explore the nature of these oscillations. It is
assumed that the viscous force due to the velocity gradients
reads

F ¼ �s

da

�
U�D

d�

dt
�̂þ r��

�
;

where the first and the second right-hand-side terms come
from the relative motion of the drop with respect to the
fluid, and the third one to its own rotational motion.
Considering now both contact points (a, below the drop,
and b, on the jump side), and using that the torque � ¼
r� F ¼ Jd�=dt, it can be shown that the components of
the rotation introduced in Fig. 3(b) are linked by the
following evolution equations:

d�r

dt
¼ � 1
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d�z

dt
¼ � 1

�b

�
R

r

d�

dt
þ�z

�
; (5)

where R is the radius of the circular trajectory drawn by the
center of the drop. These equations must be coupled with
the evolution equation for � that can be deduced from the
fundamental principles of the dynamics. Balancing inertia
mRd2�=dt2 with the sum of gravity �mgR sin� sin� and
friction �ðs=da;bÞ½r�r � Rðd�=dtÞ� forces yields
d2�

dt2
þ2

5

�
1

�a
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�b

�
d�
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þ
�
g

R
sin�

�
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5

r

R

�
�r

�a
þ�z

�b

�
:

(6)

Equation (6) completed by Eqs. (5) is simply that of a
harmonic oscillator, in which the damping term is balanced
by a gyroscopic effect. As a result, the time period of the
oscillation is close to the estimate

T ¼ 2�

�
R

g sin�

�
1=2

: (7)

This value increases with flow rate, in view of the evolution
of the jump radius (Rþ r).
Characteristic plots of the obtained behaviors are shown

in Fig. 4, for the experimental data introduced above and
� ¼ 1:1�, which implies �a ¼ 0:63 s. Estimating that Ub

is of order Ua=10, �b is obtained the same way as �a by
using the friction force developed at point a instead of the
drop weight. This leads to �b ¼ 1:7 s. In the plane (�,
d�=dt), a well-defined limit cycle is reached regardless
of initial conditions (not shown). Figure 4(a) shows the
corresponding oscillations �ðtÞ at long time scales. As in
the experiment, a nearly perfect harmonic oscillation is
obtained, even at large amplitude, which is due to the sin�
dependence of the restoring force. Plots of the rotation
frequencies �rðtÞ, ��ðtÞ, and �zðtÞ are reproduced in
Figs. 4(b)–4(d). The frequency of oscillations of ��ðtÞ is
twice that of �ðtÞ and�rðtÞ. It can be noted that the typical
spin-up time of the drop remains smaller than the period of

oscillations [�a=T ¼ 4r=15�ð�Ua sin�=�RÞ1=2 < 0:65],
which supports the consistency of our modeling. Experi-
mental results and theoretical predictions for time period
and amplitude are plotted in Fig. 4(e) for the range of flow
rates investigated. The model reproduces quantitatively the
observed features (oscillations, harmonicity, time period,
and amplitude) for � ¼ 1:1�. Nevertheless, the model is
quite sensitive to the plate inclination, and using the ex-
perimental value of � ¼ 1:0� as input leads to a shift
(dashed lines). Moreover, the period increases slightly
with flow rate while it seems almost independent of flow
rate in the experiment.
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The relative discrepancy could be attributed to an addi-
tional restoring force and/or a lessening of friction not
included in the analysis:

(i) The loss in mechanical energy linked to viscous
dissipation inside the drop has been neglected.

(ii) The model ignores the interactions of the drop with
the jump itself. The presence of the drop should affect the
jump structure, with respect to both velocity field and
capillary effects [9], which could in turn modify the drop
dynamics.
(iii) The jump inclination implies an extra draining

superimposed on the classical radial flow. This should
give rise to a tangential component of the flow along the
jump, which will exert an extra restoring force on the drop
with the same symmetries as the tangential gravity force
considered here (i.e., proportional to sin� sin�), and thus
certainly modify the time period. Moreover, the inclination
of the plate for a vertical impinging jet implies an inclina-
tion of the jet with respect of the plate itself, which is
known to affect the jump structure [12].
Nontrivial oscillatory dynamics of a single drop trapped

inside a circular hydraulic jump have been considered, in
the case of a jump developing on a slightly inclined plate.
A model has been proposed, based on the idea that the drop
is rapidly rotating while exchanging friction with the liquid
of the jump, which can lead to a gyroscopic instability.
This interpretation provides quantitative agreements, both
for frequency and amplitude selections. The problem of the
inclined circular jump itself must be investigated, owing to
its probable influence on the drop dynamics. Further stud-
ies on this fascinating phenomenon are under way.
The authors thank T. Bohr for helpful discussions,
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FIG. 4 (color online). Typical solutions of Eqs. (5) and (6)
numerically integrated with �a ¼ 0:63 s, �b ¼ 1:70 s, r=R ¼
0:25, Ua=r ¼ 123 s�1, and �2

r0 ¼ ðg=RÞ sin� ¼ 36:9 s�2;

(a) oscillatory motion �ðtÞ obtained at long time scales, (b)–
(d) related oscillations of the angular velocities�rðtÞ,��ðtÞ, and
�zðtÞ. (e) Time period of the drop oscillations versus flow rate.
Inset: amplitude versus flow rate. Lines show theoretical pre-
dictions integrating Eqs. (5) and (6). Straight line � ¼ 1:1�,
dashed line � ¼ 1:0�.
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