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We present a numerical study of the process of production of kink-antikink pairs in the collision of

particlelike states in the one-dimensional �4 model. It is shown that there are 3 steps in the process: The

first step is to excite the oscillon intermediate state in the particle collision, the second step is a resonance

excitation of the oscillon by the incoming perturbations, and, finally, the soliton-antisoliton pair can be

created from the resonantly excited oscillon. It is shown that the process depends fractally on the

amplitude of the perturbations and the number of perturbations. We also present the effective collective

coordinate model for this process.

DOI: 10.1103/PhysRevLett.105.081601 PACS numbers: 11.10.Lm, 11.27.+d

Introduction.—Nonlinear field theories in the weak cou-
pling regime usually contain two different mass scales as-
sociated with the perturbative particlelike states and with
the soliton sector of the model, respectively. Conjecture
about the role nonperturbative effects, related with the pro-
duction of the solitonlike states in particle collisions, may
play in high energy physics [1] has attracted a lot of atten-
tion recently. Over the past two decades, the problem of the
transition between perturbative and nonperturbative sec-
tors of the theory has been considered in several contexts.

The simplest example of the topological solitons in one
dimension is the kink solution of the�4 model. Dynamical
properties of kinks, the processes of their scattering, radia-
tion, and annihilation have already been discussed in a
number of papers; see, e.g., [2–9]. In integrable theories,
like the sine-Gordon model, there is no energy loss to
radiation and kinks do not annihilate antikinks. However,
in the nonintegrable �4 model, the radiation effects in the
process of kink-antikink (K ~K) collision become very im-
portant, and, depending on the impact velocity, the colli-
sion may produce various results; e.g., an oscillating bound
state can be formed, and also the soliton and antisoliton
may bounce and reflect from each other.

Although the process of annihilation of the K ~K state of
the �4 model has been investigated in detail [4,6,9], there
is not much information about the inverse process, the
creation of the K ~K pairs by the collision of two identical
bunches of particles. In the recent work [10], production of
a K ~K pair was considered in the assumption that two
colliding wave trains are composed of the bunches of
identical breathers, i.e., tightly coupled K ~K states.
Evidently, the kink-antikink production may proceed
even in the case when there are no kinklike states in the
initial configuration at all. Here we aim to elucidate the
mechanism for this process.

It is known that the collision of a kink and an antikink is
chaotic; i.e., for some values of the impact velocity the
solitons bounce back, while for some different impact

velocity, smaller or larger, they annihilate [9,11]. This
behavior is related with a resonance effect between the
oscillations of the K ~K pair and excitation of the discrete
vibrational mode of the kink.
So we might expect the opposite process of the produc-

tion of the K ~K pairs in the collision of particles will also
have a similar fractal character due to the resonance effect
between the oscillon created in the particle collision and
the oscillation of the correlated K ~K pair.
Here we investigate the oscillon resonance numerically.

We find that this resonance excitation plays a crucial role
during the process of creation of the K ~K pairs in the
collision of particles. We observe furthermore the fractal
structure of this process.
The model.—We consider the standard one-dimensional

�4 theory, with two vacua � ¼ �1, defined by the re-
scaled Lagrangian density

L ¼ 1
2@��@��� 1

2ð�2 � 1Þ2: (1)

The perturbative sector of the model consists of small
linear perturbations around one of the vacua with the
mass m ¼ 2. The static kink solution for this model inter-
polates between the vacua �0 ¼ �1 and �0 ¼ 1 as x
increases from �1 to 1: �Kðx; tÞ ¼ tanhx.
This simple model arises in many contexts. It has a

number of applications in condensed matter physics [12],
and its statical limit appears as a phenomenological theory
of second-order phase transitions [13]. It has been used as a
model of the displacive phase transitions [14], especially in
the case of uniaxial ferroelectrics [15], or as a phenome-
nological theory of the nonperturbative transition in a
polyacetylene chain [16]. In condensed matter physics, it
has been used to describe solitary waves in shape-memory
alloys [17]. In a cosmological context, it is used to model
dynamics of the domain walls [18]. Furthermore, this
model has been applied in biophysics to describe soliton
excitations in DNA double helices [19]. In quantum field
theory, it is used as a model example to investigate tran-
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sition between perturbative and nonperturbative sectors of
the theory [1]; it is also a model of quantum mechanical
instanton transitions in a double-well potential [20].

There is a lot of similarity between the nonintegrable
model (1) and its integrable sine-Gordon counterpart.
However, the states of the perturbative sector are different
in these theories. Evidently, in both models there are zero
translational modes in the spectrum of the linear perturba-
tion about the kinks, but a single �4 kink has in addition a
normalizable discrete vibrational mode, which oscillates

harmonically with frequency !1 ¼
ffiffiffi
3

p
. The continuum

modes on the kink background have higher frequencies
!> 2. Evidently, if the amplitude of the oscillation is large
enough, such a periodically expanding and contracting
kink can be treated as a kink-antikink-kink bound state,
and this excitation can be considered as an intermediate
step in the process of creation of the K ~K pair on the kink
background [5,8].

Another situation is related to the possibility of produc-
tion of the K ~K pairs on the trivial background. Indeed, the
linear excitation spectrum around the trivial vacuum con-
tains the radiation modes, and, within the �4 model, the
collision of these particlelike states may produce K ~K pairs
[21].

Note that nonlinear field theories usually contain several
types of topological and nontopological excitations.
Indeed, besides the solitonic configurations there is another
spatially localized nonperturbative oscillon solution which,
although unstable, is extremely long-lived [22–24]. The
oscillon states naturally appear in various models [25–27].

In the �4 model the oscillon solutions are almost peri-
odic. One can find the oscillon numerically by solving the
field equation in the Fourier series in time:

� ¼ 1þ �0ðxÞ þ �1ðxÞ cosð�tÞ þ �2ðxÞ cosð2�tÞ þ � � � :
(2)

If�<m ¼ 2, the oscillations are below the threshold and
cannot propagate as modes of the continuum, so the oscil-
lon remains relatively stable and the �1 term dominates.

It was pointed out recently that an oscillation mode of
the �4 model may decay into a K ~K pair [10].

Numerical results.—The initial data used in our simula-
tions represent two widely separated identical wave trains
propagating from both sides on the trivial background
towards a collision point:

�ðx; tÞ ¼ 1þ C½Fðxþ vtÞ sinð!tþ kxÞ
þ Fðx� vtÞ sinð!t� kxÞ�; (3)

where k is the wave number of the incoming wave, ! ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 4

p
is the frequency, and v ¼ k=! is the velocity of

propagation of the wave train. We consider the envelope of
the train FðxÞ ¼ ½tanhðx� a1Þ � tanhðx� a2Þ�; also the

Gaussian envelope FðxÞ ¼ e�ðx�a3Þ2 was used to prove
that our results are independent of the particular choice
of the initial state. The parameters a1, a2, and a3 define the

length of the train and the initial separation between the
trains. Typically, we used the values a1 ¼ 10, a2 ¼ 30, and
a3 ¼ 20. The amplitude C and the wave number k are the
impact parameters, which can be changed freely. To find a
numerical solution of the partial differential equation
(PDE) describing the evolution of the system, we used
the pseudospectral method on a discrete grid containing
1024 nodes with periodic boundary conditions. For the
time-stepping function we used the symplectic (or geomet-
ric) integrator of fourth order to ensure that the energy is
conserved. The time and the spatial steps are �x ¼ 0:05
and �t ¼ 0:025, respectively, so the numerical errors scale
as ð�tÞ4. We have tested our method by changing �x and
�t.
In our numerical analysis we found that after small

amplitude collisions, the two wave trains separate and
move in opposite directions, and the radiation is created
due to the interaction between these trains. In the center of
collision an oscillating lump remains. For small ampli-
tudes, the frequency of the oscillation is just a bit above
the mass threshold. This indicates that the lump could be
identified with low wave-number linear excitation of the
trivial vacuum. For large amplitude collisions, the remain-
ing lump oscillates with frequency within the mass gap, so
such a state can be identified as an oscillon.
Furthermore, for a certain range of values of the impact

parameters C and k, we observed creation of the K ~K pairs.
During this process also an oscillon is created in the
collision center (Fig. 1). The most important feature of
this process is that, in the space of parameters, the regions
of creation of the solitons and the regions where this
process in not taking place are separated by a fractal-like
boundary (Fig. 2). Indeed, this diagram is made of elemen-
tary plaquettes (boxes). In our calculations, we typically
used the pixel resolution 600� 600. If N is a number of
boxes covering the boundary between the regions of crea-
tion and the trivial sector and l is the side length of the
boxes, the box-counting (fractal) dimension is defined as
the ratio d ¼ �liml!0 logN= logl. For finite wave trains
we do not expect this boundary would be a real fractal, but
some properties of scaling are observed. We have mea-
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FIG. 1. Production of the kinks in the collision of two identical
wave trains. The initial and final field configurations are plotted
at t ¼ 0, t ¼ 45, and t ¼ 100, respectively.
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sured the fractal dimension to be d ¼ 1:770� 0:011,
which is much more than 1. In the case of the Gaussian
envelope we found d ¼ 1:865� 0:007. The interesting
peculiarity of the latter case is that the K ~K pairs can be
created even if k ¼ 0 (standing wave perturbation).

For certain values of impact parameters, an oscillon
remaining in the collision center decays into the second
K ~K pair. Sometimes the second pair moves even faster
than the first pair, and it may annihilate with the first one,
creating two moving oscillons. We know that the process
of a collision K ~K pair also leads to fractal structure in the
velocity space [4,9]. In our process, instead of creation on a
K ~K pair, two oscillons could also be ejected from the
collision center, and after a while they could decay into
two pairs of K ~K. We observed some evidence that these
processes also yield the fractal dependency of impact
parameters. This study will be reported elsewhere.

Effective collective coordinate model.—In order to cap-
ture the most important steps in the process of the creation
of a K ~K pair, in the collision of two identical bunches of
particles, we use the collective coordinate method, which
allows us to identify the physical degrees of freedom of
the system under consideration. This approach has been
applied to describe the dynamics of the kink-antikink
system [28].

First, we describe the process of creation of the oscillon
in the collision of the incoming wave trains. We assume an
initial field configuration on the trivial background

�ðx; tÞ ¼ 1þ AðtÞ
coshðx=x0Þ þ�K½XðtÞ� þ� �K½XðtÞ�

þ �ðx; tÞ; (4)

where XðtÞ is the usual translational collective coordinate
of the kink [28] and the variable AðtÞ is introduced as the
collective coordinate of the oscillon [6,23] with the pa-
rameter x0 representing the oscillon width. The perturba-
tion � should represent two wave trains coming from �1.
For the sake of simplicity, we take the perturbation of the
form (3). The Gaussian approximation to the oscillon
configuration [24] was also used to check the results.

From the expansion (2) we know that when � ¼ 0 the
oscillon should, in the first approximation, oscillate as
AðtÞ ¼ A0 cosð�tÞ, where A0 is the amplitude of the oscil-
lations, �< 2, and the value of the parameter x0 depends
on the amplitude A0. In the presence of the external field �,
the amplitude of the oscillon changes. However, for the
sake of simplicity we set x0 ¼ 1:5 as it is the width of the
oscillon oscillating with amplitude A0 ¼ 0:4. Substituting
the explicit form of the kink solution �K and perturbation
(4) into (1) and after integration over all space x gives the
effective Lagrangian, which can be split into six parts
which describe the dynamics of free kinks, the free oscil-
lon, the perturbations �, and the corresponding interactions
between the kinks and the oscillon, between the kinks and
the perturbation, and the interaction between the oscillon
and the perturbation, respectively. Truncating this model
with respect to kink collective coordinates yields the ef-
fective Lagrangian of the oscillon-perturbation system

LðA; _AÞ ¼ LA þ L� þ Lint: (5)

The Lagrangian of the free oscillon has the form

LA=x0 ¼ ð _AÞ2 � 2

3
A4 � �A3 �

�
4þ 1

3x20

�
A2: (6)

This is the Lagrangian of an anharmonic oscillator with

frequency �0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ ð1=3x20Þ

q
> 2. Since the frequency

of the oscillon must be smaller than m ¼ 2, the amplitude
of the oscillations must be large enough to decrease the
oscillation frequency below the mass threshold [24,29], so
the nonlinearities are crucial for the existence of the oscil-
lon. We assume that the field � is a solution to the equation
of motion of the Lagrangian L�. In the last part of the
Lagrangian we take only the linear term in �:

Lint¼�ðtÞAðtÞþ�ðtÞA2þ	ðtÞ _AþOðA3ÞþOð�2Þ; (7)

where �ðtÞ ¼ R
dx 4�

coshðx=x0Þ þ
�x sinhðx=x0Þ
x0cosh

2ðx=x0Þ , �ðtÞ ¼
�R 6�dx

cosh2ðx=x0Þ , and 	ðtÞ ¼ R �tdx
coshðx=x0Þ , although we have

also investigated the effect of the higher order terms.
Because � is an oscillating function over a compact sup-
port, the above Lagrangian along with LA describes dy-
namics which is similar to the dynamics governed by
Mathieu’s equation [especially the term proportional to
�ðtÞ] but with additional nonlinear terms and a source
term [proportional to �ðtÞ and 	ðtÞ]. We have studied the
dynamics of the system numerically. Unfortunately, we
could not find the analytic form of the integrals �ðtÞ,
�ðtÞ, and 	ðtÞ, so we used numerical methods which are
on the same level of complexity as the explicit solution of
the underlying PDE. However, within the collective coor-
dinate approach we can separate the most important de-
grees of freedom and show that the corresponding
nonlinear interaction is responsible for generation of the
fractal structure.
The initial condition is that Að0Þ ¼ 0. As the wave train

approaches the point of the collision, the oscillon mode is

FIG. 2 (color online). Fractal structure in the C; k plane.
Shading (or color) represent the measured minimum of average
of the field hAi ¼ 1

20

R
10
�10 dx�ðx; tÞ. The dark regions (blue in

color) where hAi<�1 indicate creation of the K ~K pairs.
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excited. If the amplitude of the perturbation is relatively
small, then the oscillon, created in the collision, oscillates
with a constant amplitude around A ¼ 0. However, if the
amplitude is large enough, or the incoming perturbations
are close to one of the (Mathieu) resonances, the amplitude
of the oscillon rapidly increases and it starts to oscillate
around A ¼ �1 (or, in other words, around � ¼ 0) with
amplitude of order 1, as illustrated in Fig. 3. This clearly
breaks our effective approach, but it also means that the
system has changed the ground state. Such a resonant
oscillation with a large amplitude, on the other hand, shifts
the center of the oscillation. Evidently, coupling of the
oscillon collective variable AðtÞ with the kink collective
coordinate XðtÞ in the complete effective Lagrangian,
which is given by the terms F½XðtÞ�AðtÞ þG½XðtÞ� _A _X
with some functions FðXÞ and GðXÞ, in the resonance
case is much stronger than other linear perturbations, so
this transition can be related with excitation of the collec-
tive coordinate XðtÞ related with creation of the K ~K pairs.

Again, when we examined this effective model, we
found a fractal structure on the plane A; k. This fractal
structure is less complicated and more localized than in
the case of the full PDE. That means that, although our
effective model works and captures qualitatively the most
important features of the full system, it also fails to repro-
duce some of the details, which is not a surprise for such a
complicated dynamical process. We have also introduced
an approximation for �ðtÞ, �ðtÞ, and 	ðtÞ, and again, we
could reproduce both the resonance excitation of the os-
cillon and the generation of the fractal structure.

This result shows that even after performing so many
simplifications we could reproduce (at least qualitatively)
the most important features of the evolution of the system.
This result confirms our conjecture about the mechanism
of the creation of the K ~K pair in a 3-stage process (i.e.,
excitation of the oscillon, resonance, and oscillon decay
into the K ~K pair). Second, we conclude that the interaction
between the incoming wave trains and the oscillon is the
underlying reason for the generation of the fractal struc-
ture. Third, given the generality of our approach, we expect
that the effective nonlinear interactions of the same type

can be found in many different models, so the fractal
structure should not be limited only to the case of the �4

model. We expect that other topological defects, like vor-
tices, hopfions, or monopoles, can be created in the process
of the same type, i.e., via resonance excitation of an
oscillon in the particle collision.
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