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In this Letter, we obtain an exact formula for the entanglement entropy of the ground state and all

excited states of the Kitaev model. Remarkably, the entanglement entropy can be expressed in a simple

separable form S ¼ SG þ SF, with SF the entanglement entropy of a free Majorana fermion system and

SG that of a Z2 gauge field. The Z2 gauge field part contributes to the universal ‘‘topological entanglement

entropy’’ of the ground state while the fermion part is responsible for the nonlocal entanglement carried by

the Z2 vortices (visons) in the non-Abelian phase. Our result also enables the calculation of the entire

entanglement spectrum and the more general Renyi entropy of the Kitaev model. Based on our results we

propose a new quantity to characterize topologically ordered states—the capacity of entanglement, which

can distinguish the states with and without topologically protected gapless entanglement spectrum.
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Exotic phases such as fractional quantum Hall (FQH)
states, which are not in the paradigm of conventional
symmetry breaking, were termed as topologically ordered
[1] since they have robust ground state degeneracy which is
protected against all local perturbations, but sensitive to the
topology of the system [2]. A topologically ordered state
has a nonlocal pattern of quantum entanglement, which is
essential for the proposal of topological quantum compu-
tation [3–5].

By bipartitioning a system spatially, the entanglement
entropy (EE) measures how closely entangled the two
subsystems are. For a gapped system, EE is usually pro-
portional to the area of the interface between the two
subsystems in the thermodynamic limit. However, as dis-
covered by Levin and Wen [6] as well as Kitaev and
Preskill [7], the entanglement entropy of a topologically
ordered state contains a universal constant term, which is
uniquely determined by the topological order of the state,
named the topological entanglement entropy (TEE). TEE
enables a direct characterization of topological ordered
states without referring to the Hamiltonian. EE and TEE
are properties of a many-body state and are usually hard to
compute. EE and/or TEE have been computed exactly or
numerically for several models such as toric code model
[3,8,9], FQH states [10–12], and quantum dimer models
[13–15]. So far there has been no exact result for the EE of
topologically ordered states whose quasiparticles obey
non-Abelian statistics.

This Letter serves to fill in that gap by providing a
simple but exact method to compute the EE for any eigen-
state (either ground or excited states) of the Kitaev model
[16], which is one of the most important exact solvable
models with non-Abelian anyons. The essence of our
method is a rigorous proof that the EE of the Kitaev model
is equal to that of two decoupled systems: a sourceless Z2

gauge field and a free Majorana fermion system. Although
the TEE of the ground state comes only from the Z2 gauge
field, the fermionic part is responsible for all nontrivial
entanglement properties of the non-Abelian phase. Besides
the EE, our method also enables the computation of the
whole entanglement spectrum (ES), i.e., the eigenvalue
spectrum of the reduced density matrix [17]. We show that
the entanglement spectrum is gapless or gapped in the non-
Abelian and Abelian phase of the Kitaev model, respec-
tively. We propose a new quantity, the capacity of entan-
glement, which can be used to distinguish different topo-
logical states with gapped and gapless entanglement
spectrum.
Kitaev model is a spin-1=2model originally proposed on

the honeycomb lattice [16] with the Hamiltonian

H ¼ � X

x link

Jx�
x
i �

x
j �

X

y link

Jy�
y
i �

y
j �

X

z link

Jz�
z
i�

z
j; (1)

where x, y, and z link stand for the three types of links. It
has a non-Abelian phase when the time-reversal symmetry
is broken either explicitly by magnetic field [16] or three-
spin couplings [18] or spontaneously by decorating the
honeycomb lattice [19]. For simplicity, hereafter we will
present our exact results of EE and entanglement spectrum
for the Kitaev model on honeycomb lattice, but our ap-
proach can be generalized straightforwardly to a broad
class of Hamiltonians, including the Kitaev model on any
trivalent lattice and Gamma matrix models [20–24].
The Kitaev model can be solved by introducing the

Majorana representation of the Pauli matrices [16]:
��

i ¼ i��
i �i (� ¼ x; y; z), where ��

i and �i are Majorana
fermion operators. ��

i and �i on each lattice site de-
fine a four-dimensional Hilbert space, so that the
Majorana representation of a spin-1=2 is redundant. The
physical Hilbert space is defined by a constraint
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Di ¼ �i�x
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y
i �

z
i ¼ �x

i �
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z
i�i ¼ 1. In other words, a state

j�i is physical only if Dij�i ¼ j�i for every i. In the
Majorana representation we have ��

i �
�
j ¼ ��

i �
�
j �i�j ¼

�iûij�i�j, in which the link operators ûij ¼ i��
i �

�
j mu-

tually commute and also commute with the Hamiltonian.
Since û2ij ¼ 1, ûij can be considered as c numbers with

values uij ¼ �1, so that the Kitaev model is equivalent to a

free model of � Majorana fermions coupled to static Z2

gauge fields [16,18,19,24–27]. The ground state of such a
model is given by the direct product of a Z2 gauge con-
figuration jui and the corresponding Majorana fermion
ground state j�ðuÞi. Here the configuration u is determined
by minimizing the fermion ground state energy. There is a
macroscopic ground state degeneracy in the enlarged
Hilbert space, because each state jui � j�ðuÞi is degener-
ate with all the states ju0i � j�ðu0Þi with u0 gauge equiva-
lent to u. However, such a degeneracy is removed when the
constraint Di ¼ 1 is applied. The physical ground state is
the ‘‘gauge’’ average of the degenerate states, implemented
by the projection [16]

j�i ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
2Nþ1

p X

g

Dgjui � j�ðuÞi; (2)

where N is the total number of lattice sites, g denotes a set
of lattice sites, andDg ¼

Q
i2gDi. We defineD ¼ Q

i2LDi

withL the set of all lattice sites. The sum
P

g is taken over

all possible subsets g of L. Note that, in Eq. (2), we
implicitly assumed that Djui � jc ðuÞi ¼ jui � jc ðuÞi be-
cause states with D ¼ �1 will be annihilated by the pro-
jection. Consequently, we have Dg ¼ DD �g for the

complement �g ¼ L� g, so that Dgjui � j�ðuÞi ¼
D �g¼L�gjui � j�ðuÞi. In other words there are only 2N�1

inequivalent gauge transformations, as expected.
We define the Kitaev model on a torus and bipartite the

lattice into subsystems A and B, as shown in Fig. 1. The EE
between A and B is defined as S ¼ �TrA½�A log�A�, where
�A ¼ TrB� ¼ TrBj�ih�j is the reduced density matrix of
A. To calculate the EE, we will follow the ‘‘replica trick’’
introduced in Ref. [28]:

S ¼ �TrA½�A log�A� ¼ � @

@n
TrA½�n

A�jn¼1: (3)

The entanglement entropy can be obtained if we can
compute TrA½�n

A� for arbitrary positive integer n and then
extrapolate the result to n 2 R.
To obtain �A, we trace out the spin degrees of freedom in

B, which normally can be carried out in terms of fermions
and gauge fields. However, the gauge fields on the partition
boundary are shared by A and B, so we regroup those gauge
fields on the boundary links to introduce new Z2 gauge
variables which live in A and B exclusively, as shown in
Fig. 1. (See supplementary material [29] for details.) The
calculation of Tr½�n

A� requires some careful treatment of
the gauge transformation but is a well-defined mathemati-
cal procedure. Thus, we will leave the details involved in
obtaining �A and Tr½�n

A� to the supplementary material
[29] and present only the final result here:

Tr A½�n
A� ¼ TrA;G½�n

A;G� � TrA;F½�n
A;F�; (4)

for any positive integer n. Here �A;F ¼ TrB½j�ðuÞih�ðuÞj�
is the reduced density matrix for the free Majorana fermion
state j�ðuÞi and �A;G ¼ TrB½jGðuÞihGðuÞj� is that of a pure
Z2 gauge field [9]; the ground state of the Z2 gauge field
jGðuÞi is given by a equal weight superposition of all the
2N�1 gauge field configurations j~ui that are gauge equiva-
lent to jui, i.e., jGðuÞi ¼ 2�ðN�1Þ=2P

~u’uj~ui.
Combining Eqs. (4) and (3), it is now obvious that the

EE S can be separated into the gauge field part SG and the
fermion part SF as follows:

S ¼ SG þ SF: (5)

Equations (4) and (5) are among the central results of this

work. From TrA;G½�n
A;G� ¼ 2�ðL�1Þðn�1Þ (see supplemen-

tary material [29] for details), it is clear that SG ¼ ðL�
1Þ log2. As will be shown below, the fermion part has the
form SF ¼ �Lþ oð1Þ, where � is a positive constant and
oð1Þ represents terms which vanish as L ! 1. In the
thermodynamic limit, the total entanglement entropy is
given by

S ¼ ð�þ log2ÞL� log2; (6)

from which we conclude that the TEE is Stopo ¼ � log2.

Our derivation is valid for all phases of the Kitaev model,
including the Abelian (Z2 gauge theory), non-Abelian
(Ising anyon) phases, and also gapless phases. Thus our
result directly proves that the TEE for the Abelian and non-
Abelian phases are identical, as expected from the total
quantum dimensions of their quasiparticles [30].
Despite its trivial contribution to TEE, the fermion

sector SF is responsible for all the essential differences
between the Abelian and non-Abelian phase of the Kitaev
model in their quantum entanglement properties. The EE
of a free fermion system can be computed by the method
introduced in Ref. [31]. To obtain an explicit understanding
of the fermion EE, we consider a torus divided by two

a1

b1

a2

b2

a2L

b2L

A

B

a3

b3

b2L-1

a2L-1

b4

a4

FIG. 1. The schematic honeycomb lattice is bipartitioned into
two parts A and B. The partition boundary (dashed line) cuts the
links anbn, n ¼ 1; . . . ; 2L. New Z2 gauge variables (see the
supplementary material [29]) ŵA;n and ŵB;n are introduced on

the new (dotted) links a2n�1a2n and b2n�1b2n, n ¼ 1; . . . ; L,
respectively.
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parallel circles into A and B regions, as shown in Fig. 2(a).
The boundary circle is along the ŷ direction. On the
torus, the free Majorana fermion Hamiltonian can be block

diagonalized in the basis of ky: H ¼ P
i;j�i�jhij ¼P

x;x0;ky�
y
x ðkyÞhxx0 ðkyÞ�x0 ðkyÞ. Thus the system consists of

decoupled one-dimensional subsystems of each ky. The EE

is given by [31]

SF ¼ � 1

2

X

n;ky

½�n log�n þ ð1� �nÞ logð1� �nÞ�ðkyÞ; (7)

where �nðkyÞ are the eigenvalues of the single-particle

correlation function Cxx0 ðkyÞ ¼ h�y
x ðkyÞ�x0 ðkyÞi for each

ky. �n plays the role of Fermi-Dirac distribution 1=ðe�	n þ
1Þ in thermal entropy, so that �n ¼ 0ð1Þ corresponds to
fully unoccupied (occupied) states, respectively. The ‘‘en-
tanglement spectrum’’ �nðkyÞ has been computed numeri-

cally for both non-Abelian and Abelian phases, as shown in
Fig. 2(b), for the Kitaev model with three-spin terms J0
[18]. The ES is gapped for the Abelian phase, and gapless
for the non-Abelian phase, similar to the edge states in the
energy spectrum. Similar observations have been made in
topological insulators and superconductors [32–35] and in
FQH systems [17]. The two gapless branches in the ES
come from the two boundaries between A and B. Since
�nðkyÞ’s are smooth functions of ky, we see from Eq. (7)

that in the continuum limit SF ¼ P
ky
SðkyÞ ’ L

R
SðkyÞ dky2


satisfies the area law. It is interesting to note that a ‘‘gap’’
always exists between the edge states and other bulk states
with �nðkyÞ close to 0 or 1, which is analogous to the

‘‘entanglement gap’’ studied in Ref. [36] for FQH system.
The situation becomes more interesting when we con-

sider a cylinder with periodic boundary condition (PBC)
for fermions and the partition shown in Fig. 2(a). As shown
in Fig. 2(c), in the non-Abelian phase the numerical cal-
culation gives only one branch of ‘‘gapless’’ states in the
entanglement spectrum. Physically, this is because the
coupling through the other boundary between A and B is
removed by the open boundary condition. However, at
ky ¼ 0 there is one isolated additional state with � ¼
1=2, as shown by the blue circle in Fig. 2(c), which is
due to the nonlocal entanglement between the two
Majorana zero modes at the open boundary. Conse-
quently, the entropy SðkyÞ is not a smooth function of ky
but has an additional log

ffiffiffi
2

p
contributed by ky ¼ 0, as

shown in Fig. 2(d). Compared with the torus case, in the

thermodynamic limit we get SF ¼ �Lþ log
ffiffiffi
2

p
, which

shows explicitly that in the non-Abelian phase a cylinder
with PBC for fermions is topologically equivalent to a
sphere with two non-Abelian quasiparticles (usually
named as � particles), as illustrated in Fig. 2(a). Each

particle carries a log
ffiffiffi
2

p
entropy which is solely contributed

by the fermion sector.
In addition to the EE, more information is contained in

our result. The fact that Eq. (4) holds for any positive
integer n indicates that the many-body entanglement spec-
trum—the eigenvalue spectrum of �A—is the direct prod-
uct of the ones of �A;G and �A;F. From TrA;G½�n

A;G� ¼
2�ðL�1Þðn�1Þ, one can know that �A;G has 2L�1 nonzero

eigenvalues, all of which are degenerate and have the value

of 2�ðL�1Þ. Consequently, all nonvanishing eigenvalues of
�A are given by those of the Majorana fermion reduced

density matrix �A;F times 2�ðL�1Þ. Thus the low ‘‘energy’’

(i.e., close to the maximal eigenvalue of �A) feature in the
entanglement spectra of �A can be entirely character-
ized by its fermionic part, which is gapped in the Abelian
phase and gapless in the non-Abelian phase, as shown in
Fig. 2(b).
Such a qualitative difference in the entanglement spec-

trum can be characterized by the Renyi entropy [37] S� ¼
1

1�� log Tr��, which reduces to the EE (or von Neumann

entropy) at � ! 1. According to Eq. (4) the Renyi en-
tropy of the Kitaev model is given by S� ¼ SF� þ SG� for
any �, with SG� and SF� the contribution from Z2 gauge

fields and fermions, respectively. From TrA;G½�n
A;G� ¼

2�ðL�1Þðn�1Þ, one can see that SG� ¼ SG ¼ ðL� 1Þ log2.
Thus the TEE in SG� is � independent, which is a generic
property of the string-net models [38,39]. The � depen-
dence of SF� in the Abelian and non-Abelian phases has
qualitative difference due to their different entanglement

spectra. If we define � ¼ e�H , the quantity S�ð1�
1=�Þ ¼ � 1

� log Tre��H is the same as the free energy

FIG. 2 (color online). (a) Schematic picture of a torus and a
cylinder, each split to two regions A and B. The cylinder is
equivalent to a sphere with two quasiparticles. (b) The entangle-
ment spectrum �nðkyÞ vs ky for non-Abelian (red solid lines) and
Abelian (blue dotted lines) states on the torus. Here and below,
we take the parameters Jx ¼ Jy ¼ Jz ¼ 1 and next-nearest

neighbor coupling J0 ¼ 0:2 for the non-Abelian state and Jx ¼
Jz ¼ 1, Jy ¼ 2:5, J0 ¼ 0:2 for the Abelian state. (c) The entan-

glement spectrum for the non-Abelian state on cylinder. The blue
circle marks an additional state with � ¼ 1=2 at ky ¼ 0. (d) The

entropy SðkyÞ vs ky for non-Abelian (red solid line) and Abelian

(blue dotted line) states on the torus and for non-Abelian state on
cylinder (black dashed line with circles).

PRL 105, 080501 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending

20 AUGUST 2010

080501-3



of a thermal system with HamiltonianH and temperature
t ¼ 1=�. The behavior of the low energy spectrum of H
can be obtained from the following quantity:

CEðtÞ ¼ �t
@2

@t2
½ð1� tÞS1=t�; (8)

which is termed the ‘‘capacity of entanglement’’ and is the
analog of heat capacity Cv in a thermal system. The
explicit expression of S� and CEðtÞ is given in the supple-
mentary material [29], which leads to the numerical results
shown in Fig. 3. As expected, in the limit of t ! 0, CEðtÞ
vanishes exponentially for the Abelian phase but linearly
for the non-Abelian phase, since the latter has a gapless
entanglement spectrum with constant density of state.
More generically, if the entanglement Hamiltonian H
describes a (1þ 1)-dimensional conformal field theory
(CFT) in the long wavelength limit [7,17], the capacity
of entanglement is given by CEðtÞ ¼ ð
cL=3vÞt for t ! 0,
with L the length of the boundary and c and v the central
charge and velocity of the CFT, respectively [40].
Moreover, ifH describes a critical theory with dynamical
exponent z, from dimensional analysis one can obtain the

asymptotic behavior CEðtÞ / Lt1=z for t ! 0. Thus we see
that the capacity of entanglement characterizes some im-
portant qualitative behavior of the entanglement spectrum
in generic systems.
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FIG. 3 (color online). (a) Renyi entropy S� and (b) capacity of
entanglement CE defined by Eq. (8) of non-Abelian (red solid
line) and Abelian (blue dashed line) states. The black dotted line
is a linear fitting. The parameters are the same as those in Fig. 2.
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