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The advance of particles in many driven diffusion systems depends on the availability of resources in

the surrounding environment. In the balance between supply and demand of such resources we are

confronted with a regime in which, under limited resource availability, the flow is markedly reduced. In

the context of mRNA translation this represents the finite availability of amino acid-tRNA molecules. In

this limited resources regime a severe depletion of amino acid tRNAs is also observed. These dramatic

effects are vital to our understanding of translation, and are likely to also be important for the many other

applications of driven diffusion models.
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In many physical and biological processes the dynamics
rely on the availability of specific resources; there is a
balance between supply and demand. In this Letter we
show, by recourse to an extension to a driven diffusion
model (the totally asymmetric exclusion process, or
TASEP), that there is a regime where the rate at which
resources are replenished limits the dynamics. In the con-
text of messenger RNA (mRNA) translation, which is the
process of protein biosynthesis, this represents the finite
availability and recharging of amino acid-transfer RNA
(aa-tRNA) complexes. We identify a transition to a limited
resources (LR) regime where the current is severely re-
duced; this further differs from the maximal current (MC)
phase seen in earlier TASEPs in that it is accompanied by a
depletion of aa-tRNAs. The fact that such a dramatic effect
is seen has major implications for our understanding of
translation and protein production, as well as the response
of the cell to stress, e.g., resource starvation [1].

The TASEP is one of the paradigmatic models of non-
equilibrium statistical physics. It has been used to describe
a wide range of systems, including traffic flow [2], trans-
port via molecular motors [3], interface growth [4], and, as
examined here, mRNAs translation [5]. Under some con-
ditions exact results for the stationary state of the system
have been found [6], while more generally a mean field
approach can accurately represent the system [6,7]. The
TASEP consists of a 1D lattice of sites along which parti-
cles move. The dynamics unfold with particles hopping
from one site to the next with a site dependent rate ki
(where i labels the site). Particles are excluding; i.e., a
particle can only hop if the next site is vacant. Particles
enter and leave the lattice only at the left and right ends
with rates � and �, respectively. The system is character-
ized by the mean density of particles � and the current J.

In translation molecular machines called ribosomes
move along an mRNA molecule, adding amino acids to a
polypeptide chain as they go [8]. The mRNA is a string of
nucleotides, every three of which forms a codon and gives

a code for a specific amino acid. Amino acids are brought
to the ribosome by mediator molecules called tRNAs,
different types of which are specific to different amino
acids. This process is crucial in understanding how differ-
ent cells that contain the same genetic information select
which proteins are produced (cell differentiation), and how
the protein production mechanism might react to changes
in the environment. In the TASEP the mRNA is repre-
sented by the lattice, with each site corresponding to one
codon; the particles represent the ribosomes.
Much work has focused on the effect of particular codon

usage [9]. It is thought that the rate at which a ribo-
some translates a single codon depends on the abundance
of the relevant aa-tRNA complex. Some tRNAs are much
more abundant than others, meaning that some codons are
translated at much higher rates than others [9]. Also, since
there are 20 common amino acids represented by 41
tRNAs, the code is redundant; i.e., the same sequence of
amino acids can be encoded by more than one codon
sequence. In fact, there are many mRNAs where a codon
representing a very rare tRNA is used instead of a more
common one; such a ‘‘slow codon’’ can act as a bottleneck,
causing queues of ribosomes and delays to protein produc-
tion. Several authors [7] have studied the effect of slow
sites on ribosome density and protein production rate,
addressing the question as to why such coding sequences
might be of benefit.
Here we consider the additional complication that the

number of available aa-tRNAs is dynamic: ki is allowed to
vary with the availability of resources. During translation
an aa-tRNA binds to a ribosome; if it is of the correct type,
the amino acid is added to the peptide chain and a bare
tRNA is released. Whilst tRNAs are not used up in the
process, it takes a finite time for them to be ‘‘recharged’’
with new amino acids. Since there are many mRNAs being
translated by many ribosomes simultaneously, there is
competition for aa-tRNA resources. We show that a finite
tRNA charging rate leads to a new physically and bio-
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logically significant regime. This is in contrast to other
studies which consider the availability of ribosomes [10].

We derive below a mean field model for a TASEP which
includes a finite rate of charging of tRNAs, before compar-
ing with results from Monte Carlo simulations (MCS).

We model a system of N mRNAs, each represented by a
TASEP of length L. We first consider a very simple model
mRNA which uses only one type of codon (and therefore
only one type of tRNA), i.e., ki ¼ k, for i ¼ 1; . . . ; L� 1.

We write a mean field description of the model d�i

dt ¼
ki�1�i�1ð1� �iÞ � ki�ið1� �iþ1Þ, i ¼ 1; :::; L, where
k0 ¼ � and kL ¼ �, and �i gives the ensemble average
occupancy at site i, with �0 ¼ 1 and �Lþ1 ¼ 0 [6].

We derive an equation to describe the use and recharging
of the aa-tRNA pool. Since the formation of the aa-tRNA
complex is an enzymatic process we describe it using a
Michaelis-Menten equation [11]. The charging rate is
given by Vð �T � TÞ=ðKm þ �T � TÞ, where T is the number
of aa-tRNAs and �T is the total number of tRNAs. The
constants V and Km are the maximum recharging rate and
the Michaelis constant, respectively. We assume that the
availability of amino acids is not limiting, and that the
hopping rate k depends linearly on the number of charged
tRNAs, k ¼ rT, where r is some intrinsic elongation rate.
We expect that k will actually saturate at some maximum,
though the linear approximation is justified since the cell is
unlikely to overproduce tRNAs for energetic reasons.
Every time a particle hops we reduce T by one; this leads
to the equation

dT

dt
¼ Vð �T � TÞ

Km þ �T � T
�XL0

i¼1

k�ið1� �iþ1Þ; (1)

where the first term corresponds to recharging and the
second to the use of aa-tRNAs. The quantity L0 ¼ NðL�
1Þ gives the total number of sites where aa-tRNAs can be
used (L� 1 since the Lth codon does not require a
aa-tRNA, but instead a termination factor). In the steady
state we identify the particle current J ¼ k�ið1� �iþ1Þ,
which is independent of i and corresponds biologically to
the protein production rate. From Eq. (1) we can therefore
write the hopping rate as a function of J

k ¼ r �T � rKmL
0J

V � L0J
: (2)

We proceed by considering first the equivalent system
with periodic boundaries. As �i ¼ �8 i, and from Eq. (2)

we can write an implicit expression for the current JPB ¼
�ð1� �Þ

�
r �T � rKmL

0JPB
V�L0JPB

�
. Of the two solutions to this qua-

dratic equation in JPB, one can be disregarded as it is
unphysical (nonzero current for zero density). From the
remaining solution we find that the maximum value of JPB
occurs when � ¼ 1=2, and we plot this a function of V=L0
in Fig. 1(a). For small V=L0, Jmax

PB increases almost linearly
with V=L0, but for values of V=L0 � rð �T þ KmÞ=4, Jmax

PB

saturates, reaching approximately r �T=4. Therefore, we

distinguish between two regimes as case 1: Jmax
PB � r �T

4 for
V
L >

rð �TþKmÞ
4 , and case 2: Jmax

PB � V
L0

�T
�TþKm

for V
L <

rð �TþKmÞ
4 .

Figure 1(b) shows the current as a function of the density �
for each case. In case 1 we observe behavior as in the
original TASEP: the maximal current is determined by the
steric interaction of the particles. In case 2 we observe a
different type of behavior: JPB appears to reach a plateau at
some critical density, but actually there is a very shallow
increase to a maximum at � ¼ 1=2. We identify this as a
‘‘limited resources’’ (LR) regime; aa-tRNAs are being
used up more quickly than they can be recharged, so the
steady state value of k is reduced; the current cannot
increase above J � V=L0 since V is the maximum possible
recharging rate and JL0 is the rate of aa-tRNA usage. The
translation rate is governed by the recharging rate rather
than steric interactions. Crucially, using biologically rele-
vant parameters (see below), V=L0 is 3 orders of magnitude
smaller than rð �T þ KmÞ=4; i.e., we expect case 2 to be
realized in biology. We note that these solutions retain the
common features of previous TASEP models, such as one
central maximum and symmetry about � ¼ 1=2 (i.e., hole-
particle symmetry).
Unless stated otherwise, throughout this Letter we use

parameters which are realistic for the widely studied yeast,
S. cerevisiae. A typical cell contains a total of 3:5� 106

codons and 3� 106 tRNAs, with a typical mRNA length of
500 codons. The total number of codons represents the
system size. We studyN ¼ 100 individual TASEPs of L ¼
500 sites. Since we have scaled down the system size by a
factor of 70, we also scale the other parameters accord-
ingly. We use �T ¼ 4:3� 104 and r ¼ 2:3� 10�4 s�1, the
latter being chosen to give a biologically realistic maxi-
mum hopping rate r �T ¼ 10 s�1 [8]. We use V ¼ 1:95�
103 s�1 and Km ¼ 497, which are based on recharging
parameters for a typical tRNA synthetase (tyrosine-tRNA
synthetase [12]). These biologically relevant parameters
(which are typical for many enzymes) give V=L0 ¼
0:039 s�1 and rð �T þ KmÞ=4 ¼ 2:5 s�1, so are well within
case 2 as defined above. This implies that the balance
between supply and demand of resources is an important
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FIG. 1. (a) Jmax
PB as a function of V=L0. The dotted line shows

J ¼ ð �T=ð �T þ KmÞÞðV=L0Þ, and dashed lines are at r �T=4 (hori-
zontal) and rð �T þ KmÞ=4 (vertical). (b) JPB as a function of �.
Dashed lines show case 1 (V=L0 ¼ 5), and solid lines case 2
(V=L0 ¼ 0:55). Other parameters as in text. Inset: zoom about
the apparent plateau in JPB.
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effect in translation, particularly for the cell’s reaction to
changes in its environment, e.g., resource starvation.

We now return to the open boundaries system. Using the
‘‘maximal current principle’’ [13] we can relate the peri-
odic to the open system via

J ¼ maxJPBð�Þ if �� >�> �þ; (4)

where �� (�þ) is an effective density associated with a
reservoir of particles to the left (right) of site i ¼ 1 (i ¼ L)
in the open system, and related to the rate � (�).
As in previous TASEP models, we find several regimes

which we identify as low density (LD) and high density
(HD) (corresponding to entry and exit limited) phases, and
a maximal current (MC) phase. We find

J LD ¼ 1

2

�
�

�
1� �

rð �T þ KmÞ
�
þ �T

�T þ Km

V

L0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� �T
�T þ Km

V

L0 þ �

�
1� �

rð �T þ KmÞ
��

2 � 4�ðr �T � �Þ
rð �T þ KmÞ

V

L0

s �
;

�LD ¼ 1

2�

�
�

�
1þ �

rð �T þ KmÞ
�
� �T

�T þ Km

V

L0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� �T
�T þ Km

V

L0 þ �

�
1� �

rð �T þ KmÞ
��

2 � 4�ðr �T � �Þ
rð �T þ KmÞ

V

L0

s �
;

(5)

for �< �; � � ��, and

J MC ¼ 1
2�

�; �MC ¼ 1
2; for �;� � ��; (6)

where

�� ¼ r

4
ð �T þ KmÞ þ V

L0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
r

4
ð �T þ KmÞ þ V

L0

�
2 � r �T

V

L0

s
:

We do not include details of the HD phase (�< �, �<
�� ¼ ��), but due to particle-hole symmetry J HD can
easily be obtained from the LD equation by replacing � !
�. From now on we set � to a constant value � � k, since
it is thought that translation is not limited by the termina-
tion step, so this is a reasonable approximation for a real
cell. For clarity, we use the calligraphic J to refer to the
exact equations above, and J with subscripts to refer to the
approximations in the various regimes.

As for periodic boundaries we again see different be-
havior for the two cases as defined above; this is evident
from the fact that from the maximal current principle,
JMC � Jmax

PB [Fig. 1(a)]. For case 1 [Figs. 2(a)–2(c)] we
see approximately the same behavior as in the original
TASEP: as � is increased there is a second order phase
transition at �� from LD ! MC. By taking the limit V !
1 in Eqs. (5) and (6) we find JLD � �ð1� �=r �TÞ and
JMC � r �T=4.

For the biologically relevant case 2 we see behavior
different from the original TASEP. In Figs. 2(d)–2(f) we
plot J, � and k as functions of �. We show that at small �,
the current follows the same equation for JLD as in case 1,
but at a critical value �LR we see a dramatic change in the
behavior to a regime where the current is approximately
independent of �, and the density rapidly increases. We
also note a severe decrease in the hopping rate k. Although
in moving to the LR regime it appears that some quantities
have a discontinuity in their derivatives, the change is
actually smooth with the parameter Km controlling the
‘‘sharpness.’’ This is equivalent to the regime in the peri-
odic system where there appears to be a plateau; actually
there is a very small increase in the current (and we are still
in the LD phase) until ��, where we move to the MC phase
where JLR-MC � V �T=L0ð �T þ KmÞ [see Fig. 1(b) inset].

Also, note that the maximal current in case 2 is dramati-
cally decreased compared to that in case 1.
In Fig. 2 we also show stochastic MCS results. The

simulations proceed in a similar manner to previous studies
[6]. We pick with equal probability either a site on one of
the lattices (we represent the reservoir of particles waiting
to hop onto the lattice as site 0) or a tRNA. If we choose a
site and it is occupied, the particle hops with probability
k�t (��t or ��t for initiation or termination) provided the
next site is vacant. If we choose a tRNA and it is not al-
ready bound to an amino acid, we recharge it with proba-
bility V�t=ðKm þ �T � TÞ. We repeat this NðLþ 1Þ þ �T
times in each MCS step of length �t. Every time a particle
hops or a tRNA is recharged we update the probabilities
accordingly. Simulations are run for 105 s with the first
104 s disregarded to account for transient effects. Error
bars represent the fluctuations in J, � and k [14].
The existence of the LR regime in case 2 is due to the

fact that as we increase the rate � at which particles hop
onto the lattice, we increase the rate at which aa-tRNAs are
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FIG. 2. J, � and k as functions of �. Points show MCS results,
solid lines the mean field model, and dotted lines �LR and ��.
(a)–(c) Show case 1 (V=L0 ¼ 5; other parameters as text) and
(d)–(f) case 2 (parameters as text). Deviation of the points from
the lines is due to spatial correlations in the density and fluctua-
tions which are not accounted for by the mean field model. The
fluctuations (shown in error bars) are small since the system
contains many mRNAs and tRNAs, and these further reduce if
we increase the size of the system.
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used. If the aa-tRNAs are being used more quickly than
they can be recharged we see a reduced value of the
hopping rate k (an effect not considered in previous mod-
els). For small V we find �LR � V �T=L0ð �T þ KmÞ.

The biological interpretation of these results is that due
to the fact that the enzymatic recharging is finite, the
maximum protein production rate will depend on the bal-
ance between the supply of, and the demand for, aa-tRNAs.
Moreover we note that since Km 	 �T, �LR � V=L0; i.e.,
the transition to the LR regime is robust to small changes in
the total number of tRNAs. If the recharging rate were fast
enough (case 1) such that the current was only limited by
the steric repulsion between the ribosomes, then the maxi-
mum protein production rate would be proportional to the
total number of tRNAs only, and competition for ribo-
somes would not be a dominant effect.

It should be noted that a real ribosome actually covers
around 9 codons as it translates an mRNA. The inclusion of
particles of length d is straightforward [15], and despite the
breaking of hole-particle symmetry gives results qualita-
tively similar to those above (not shown).

We have shown that the production rate of proteins can
be dramatically limited by the recharging process of tRNA
molecules. Depending on the recharging parameters, we
find two distinct cases. In case 1 the maximum current that
can be achieved is solely limited by the steric interactions
of the particles. In case 2, the current is severely limited by
the finite recharging rate, and as � is increased we obtain a
LD ! LR-LD ! LR-MC transition (where LR-LD and
LR-MC denote the limited resources regime within in the
LD and MC phases, respectively). At first glance case 2
gives a similar profile for Jð�Þ as seen in a TASEP with a
slow bottleneck site, where there is a first order transition
to a queueing phase [7], however, here we have no bottle-
necks, no queues form, and there is no phase transition at
�LD. It is particularly interesting that �LR and JLR-MC are
independent of the intrinsic hopping rate r, and approxi-
mately independent of the total number of tRNAs; i.e., only
the recharging, and not the abundance of tRNAs is impor-
tant. This is a result of our choice of a linear dependence of
k on T. We feel that this is a justified approximation,
however, as we expect the value of �T in a real cell to be
below any saturation point, since it is thought that trans-
lation is limited by correct aa-tRNA selection and not the
translocation process itself [9]. Biologically relevant pa-
rameters belong to case 2, so we would expect to be able to
observe the LR regime experimentally. A hallmark of the
LR regime is the sharp reduction in the ‘‘charging level’’ of
aa-tRNAs [we note the stark difference between Figs. 2(c)
and 2(f)]. This has not been present in previous models,
and since such a large change in the ‘‘charging levels’’ of
aa-tRNAs can easily be observed experimentally, is an
ideal candidate for verification of the effect.

Finite tRNA recharging may also be important in under-
standing the response to cellular stress, e.g., a reduction of

the availability of amino acids would have a similar effect
as reducing V in this model.
Finally, we expect that a similar LR regime may arise in

other TASEP models. For example in models of transpor-
tation via molecular motors [3] the motors ‘‘walk’’ along
actin filaments using energy obtained by ATP hydrolysis. If
the ATP molecules are supplied at a finite rate, one might
expect to observe ‘‘limited resources’’ when the rate at
which ATP molecules are hydrolyzed increases above
some critical value. We have performed simulations using
a different form for the recharging and we do indeed
observe similar behavior.
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