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We propose and analyze theoretically an experimental setup for detecting the elusive Majorana particle

in semiconductor-superconductor heterostructures. The experimental system consists of one-dimensional

semiconductor wire with strong spin-orbit Rashba interaction embedded into a superconducting quantum

interference device. We show that the energy spectra of the Andreev bound states at the junction are

qualitatively different in topologically trivial (i.e., not containing any Majorana) and nontrivial phases

having an even and odd number of crossings at zero energy, respectively. The measurement of the

supercurrent through the junction allows one to discern topologically distinct phases and observe a

topological phase transition by simply changing the in-plane magnetic field or the gate voltage. The

observation of this phase transition will be a direct demonstration of the existence of Majorana particles.
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The Majorana fermions were envisioned by Majorana
[1] in 1937 as fundamental constituents of nature.
Majorana particles are intriguing and exotic because each
Majorana particle is its own antiparticle unlike Dirac fer-
mions where electrons and positrons (or holes) are distinct.
Recently, the search for Majorana fermions has focused on
solid state systems where many-body ground states may
have fundamental quasiparticle excitations which are
Majorana fermions [2]. Although the emergence of
Majorana excitations, which are effectively fractionalized
objects (anyons) obeying non-Abelian statistics rather than
Fermi or Bose statistics [3], in solid state systems is by
itself an extraordinary phenomenon, what has attracted a
great deal of attention is the possibility of carrying out fault
tolerant topological quantum computation in 2D systems
using these Majorana particles [4]. Such topological quan-
tum computation, in contrast to ordinary quantum compu-
tation, would not require any quantum error correction
since the Majorana excitations are immune to local noise
by virtue of their nonlocal ‘‘topological’’ (TP) nature [3,4].
The direct experimental observation of Majorana particles
in solid state systems would therefore be a true break-
through both from the perspective of fundamental physics
of fractional statistics in nature and the techno-
logical perspective of building a working quantum com-
puter. It is therefore not surprising that there have been
several recent proposals for the experimental realization of
Majorana fermions (MFs) in solid state systems [5–7].

In this Letter, we propose and validate theoretically a
specific experimental setup for the direct observation of
MFs in one of the simplest proposed solid state systems—
1D semiconductor-superconductor heterostructure based
quantum wires. This particular heterostructure consisting
of an ordinary superconductor (e.g., Nb) and a semicon-
ductor with strong spin-orbit coupling (e.g., InAs) as pro-
posed originally by Sau et al. [6] and expanded by Alicea

[7], is simple and does not require any specialized materi-
als for producing Majorana modes. The superconductor
(SC) induces superconductivity in the semiconductor
(SM) where the presence of spin-orbit coupling leads to
the existence of MFs at the ends of the wire. We show that
in a suitable geometry (see Fig. 1) the superconducting
state in the semiconductor undergoes a phase transition, as
the chemical potential or magnetic field is tuned, from a
superconducting state containing Majorana modes at the
junction to an ordinary nontopological superconducting
state with no Majorana modes at the junction. We establish
that such a transition is indeed feasible to observe in the
laboratory in semiconductor nanowires, showing in the
process how one can directly experimentally discover the
Majorana mode in the SM/SC heterostructure.
Specifically, we consider here 1D InAs nanowire

proximity coupled with an s-wave superconductor (e.g.,

FIG. 1 (color online). (a) Top view of SM/SC heterostructure
embedded into small-inductance SC loop. (b) Side view of the
SM/SC heterostructure. The nanowire can be top gated to control
chemical potential. Here we assume L � � and L1 � � with �
being the SC coherence length. (c) Proposed readout scheme for
the Andreev energy levels. Inductively coupled rf-driven tank
circuit allows time-resolved measuring of the effective state-
dependent Josephson inductance [19].
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Nb or Al). InAs nanowires in proximity to Nb and Al have
been studied experimentally [8] and are known to form
highly transparent interfaces for electrons allowing one to
induce a large SC gap �0 in InAs (�0 & �Nb � 15 K) [9].
Moreover, in this quasi-1D geometry [see Fig. 1(b)] the in-
plane magnetic field Bx can open up a gap in the spectrum
at zero momentum and eliminate fermion doubling.
Because of the vast difference in the g factor for Nb gNb �
1 and InAs gInAs & 35 [10], the in-plane magnetic field
Bx & 0:1 T can open a sizable Zeeman gap in InAs (Vx &
1 K) without substantially suppressing SC in Nb (HNb

c �
0:2 T). The nanowire can be gated [8] allowing one to
control chemical potential in it. Thus, the current proposal
involves a simple architecture and yet preserves the pa-
rameter phase space flexibility, which puts the realization
of MFs in the SM/SC heterostructure within the experi-
mental reach.

We show below that the supercurrent through SM/SC
heterostructure exhibits unusual behavior due to the pres-
ence of MFs in the system. In particular, the spectrum of
Andreev states has an odd number of crossings at E ¼ 0 in
the TP phase (C0 � �2 þ �2

0 � V2
x < 0 with � being

chemical potential) whereas in the TP trivial phase (C0 >
0) the number of crossings is even. An odd number of
crossings is associated with the presence of MFs in the
system leading to 4�-periodic Andreev energy spectrum
[11]. Thus, this difference in the spectrum allows distin-
guishing TP and conventional SCs. The remarkable feature
of the present proposal is that by changing Bx or � across
the phase boundary between TP trivial and nontrivial
superconducting phases (C0 ¼ 0) one can contrast differ-
ent qualitative dependence of the Andreev energy spectrum
on magnetic flux � through the SQUID.

Theoretical model.—We consider an infinite (L1 � �)
1D semiconducting wire embedded into SQUID, see
Fig. 1(a). The Hamiltonian describing the nanowire reads
(@ ¼ 1)

H0 ¼
Z 1

�1
dxc y

�ðxÞ
�
� @2x
2m� ��þ i��y@x

þ Vx�x

�
��0

c �0 ðxÞ; (1)

where m�, �, and � are the effective mass, chemical
potential, and strength of spin-orbit Rashba interaction,
respectively. In-plane magnetic field Bx leads to spin split-
ting Vx ¼ gSM�BBx=2. The radius of the wire R is small
compared to the Fermi wavelength R & �F so that there is
a single 1D mode occupied. Because of the proximity
effect between SM and SC [see Fig. 1(b)], Cooper pairs
can tunnel into the nanowire. These correlations can be

described by HSC ¼ R1
�1 dx½�ðxÞc y

" ðxÞc y
# ðxÞ þ H:c:�.

Here �ðxÞ is the induced pairing potential in the nanowire
�ðxÞ ¼ �0�ðx� LÞ þ �0e

i’�ð�x� LÞ with ’ being
the phase of the order parameter.

One can recast the full Hamiltonian H ¼ H0 þHSC in
the dimensionless form by introducing rescaled coordi-

nates ~x � m��x and energies ~E � E=m��2. The
Bogoliubov–de Gennes (BdG) equations then become
~HBdG�ð~xÞ ¼ ~E�ð~xÞ. Using the convention for Nambu
spinors �ðxÞ ¼ ½u"ðxÞ; u#ðxÞ; v#ðxÞ;�v"ðxÞ� the BdG

Hamiltonian reads

~HBdG ¼ ð�1
2@

2
~x þ i�y@~x � ~�Þ�z þ ~Vx�x þ ~��ð~x� ~LÞ�x

þ ~��ð�~x� ~LÞðcos’�x þ sin’�yÞ: (2)

The solution of the BdG equations supplemented with
appropriate boundary conditions yields the Andreev spec-
trum in the junction. It is useful to solve for the energy at
’ ¼ �. At this point the profile of the order parameter in
the limit of L � � forms a domain wall, which under
certain conditions can host a pair of Majorana bound states
[6]. To demonstrate this we investigate the existence of
zero-energy solution by solving ~HBdG�0ðxÞ ¼ 0. At ’ ¼
�, BdG Hamiltonian (2) is real and, thus, one can construct
real Nambu spinors �0ðxÞ. According to the particle-hole
symmetry if �0ðxÞ is a solution, then �y�y�0ðxÞ is also a

solution. This imposes the constraint on the spinor degrees
of freedom: v"=#ðxÞ ¼ �u"=#ðxÞ with � ¼ 	1. Thus, the

4
 4 BdG Hamiltonian can be reduced to 2
 2 matrix:

� 1
2 @

2
~x � ~� Vx þ �~�ð~xÞ þ @~x

Vx � �~�ð~xÞ � @~x � 1
2@

2
~x � ~�

 !
u"ð~xÞ
u#ð~xÞ

� �
¼ 0:

(3)

One can seek solutions of Eq. (3) in the form u"=#ð~xÞ / ez~x

and require solutions for x _ 0 to be normalizable. Let us
concentrate on the x > 0 case. Then, the characteristic
equation for z following from Eq. (3) reads

z4 þ 4ð ~�þ 1Þz2 þ 8�~�0zþ 4C0 ¼ 0

with C0 ¼ ~�2 þ ~�2
0 � ~V2

x: (4)

The roots zi of the above quartic equation with real coef-
ficients should satisfy the following constraints:

Q
4
i¼1 zi ¼

4C0 and
P

4
i¼1 zi ¼ 0. If all zi are real and C0 > 0, these

constraints are satisfied only when the number of solutions
with Re½z� _ 0 is the same. If Eq. (4) has at least one
complex solution z1 ¼ aþ ib, then there is another solu-
tion z2 ¼ a� ib. Since the other two solutions are given
by the quadratic equation, one can express these roots in

terms of a and b: z3;4 ¼ �a	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 4C0=ða2 þ b2Þp

.

Given that jRe½ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 4C0=ða2 þ b2Þp �j< jaj for C0 > 0,

there are two solutions with Re½z� _ 0, respectively.
Different values of � change the sign of a, and this con-
clusion is valid for both channels � ¼ 	1. Thus, when
C0 > 0 there are two exponentially decaying solutions for
x _ 0 yielding 4 coefficients to match. Since the number of
constraints (4 from boundary conditions and 1 from nor-
malization) is larger than the number of linearly indepen-
dent coefficients, there are no zero-energy solutions for
C0 > 0. On the other hand, similar analysis for C0 < 0
always yields three roots with Re½z�< 0 either in � ¼ 1
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or � ¼ �1 channels resulting in six coefficients to match.
Therefore, in this case there is a pair of zero-energy
Majorana states. At C0 ¼ 0, there is a solution with z ¼
0, which corresponds to the closing of the SC bulk excita-
tion gap [6]. Therefore, the condition C0 ¼ 0 gives the
phase boundary between TP trivial and nontrivial SC
phases [12].

Andreev spectrum as a function of magnetic flux � can
be obtained by solving BdG equations defined by Eq. (2) in
the limit of L ! 0 (describing L � � case) and matching
the boundary conditions �ð0�Þ ¼ �ð0þÞ, @x�ð0�Þ ¼
@x�ð0þÞ. The algebra is not particularly enlightening so
we present here numerical results shown in Fig. 2, which
are consistent with above analytical considerations. The
characteristic signature of the TP nontrivial phase is the
presence of odd number of crossings in the Andreev
spectrum in contrast with the TP trivial phase where
number of crossings is even as required by 2� pe-
riodicity of the BdG Hamiltonian, see Fig. 2(a). Indeed,
in the absence of the degenerate TP sectors, upon the
advance of the SC phase ’ by 2� the system returns to
the same state. It is well known that in SC–normal metal–
SC (SNS) heterostructure the spectrum of spin-degenerate

Andreev states is Eð’Þ ¼ �0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�D sinð’=2Þ2p

[13],
where D is the interface transparency. The presence of
weak spin-orbit interactions leads to the degeneracy split-
ting of Andreev levels [14]. In the TP trivial phase, which
is adiabatically connected to Vx ! 0 limit, we obtain
similar results, see Fig. 2(d). In contrast, as shown in
Fig. 2(c) Andreev spectrum in the TP nontrivial phase is

strikingly different. This difference is related to the pres-
ence of the Majorana zero-energy modes in the system at
’ ¼ �. The quantum phase transition between these two
phases is called topological because it occurs without any
qualitative changes of the local order parameter. The two
phases are distinguished by the topological order associ-
ated with the presence of Majorana zero-energy modes.
The TP quantum phase transition occurs when �~E, which
is proportional to the quasiparticle bulk gap, becomes zero
bringing a continuum of gapless states at ~E ¼ 0. This
phenomenon is generic and applies also to Majorana bound
states in the vortex cores. The topological reconstruction of
the fermionic spectrum cannot occur adiabatically and
requires the nullification of the bulk excitation gap [15].
Looking at Figs. 2(a) and 2(c), one can see the evolution of
the Andreev energy spectrum with the magnetic field:
~Vx ¼ 2, 1.25, 0.75, which supports above arguments.
Also, Figs. 2(c) and 2(d) show the evolution of the spec-
trum with the chemical potential.
We note that the position of the zero-energy crossing is

not universal and can be shifted by adding a weak pertur-
bation, e.g., By�y. However, the crossing itself is robust

and is protected by particle-hole symmetry. Indeed, the
eigenstates with	E are related by particle-hole symmetry
�E¼���EðxÞ, where �¼�y�yK with K denoting com-

plex conjugation. One can show using the property
�y�yH�y�y¼�HT that matrix elements h�jH�j�i¼
�h�jH�j�i¼0, and thus, the crossing is protected
against any perturbations as long as the bulk gap is pre-
served. Another elegant way of demonstrating the robust-
ness of the crossing point was suggested in Refs. [11,16].
At E ¼ 0 and ’ ¼ � one can introduce two MF operators

�1;2 ¼ �y
1;2. Then, the low-energy Hamiltonian around

’� � can be written as H ¼ i2"ð’Þ�1�2. By introducing
the Dirac fermion operators c ¼ �1 þ i�2 and cy ¼ �1 �
i�2, one can rewrite the Hamiltonian above asH ¼ "ð’Þ

ðcyc� 1

2Þ, from which it follows that the states �E and

��E have different fermion parity. Thus, as long as fer-
mion parity is locally conserved the matrix elements be-
tween the states �E and ��E are zero.
Two (or even number) crossings in the Andreev spec-

trum as in Fig. 2(d) are not generally protected. We have

FIG. 2 (color online). Andreev energy spectrum in SM/SC
heterostructure for the junction with ~L ! 0. (a) Energy spectrum
in TP trivial (dashed line: ~Vx ¼ 0:75) and nontrivial (solid line:
~Vx ¼ 1:25) states. The two TP distinct phases differ by having
even and odd number of crossings, respectively. (b) Schematic
plot of the Josephson current through the junction carried by
Andreev states: light (red) and dark (blue) lines describe
Josephson current in TP trivial and nontrivial phases, respec-
tively. (c) and (d) The evolution of Andreev energy spectrum
with chemical potential. (c) The spectrum in TP nontrivial phase.
The dashed (red) line is a fit to 	 cosð’=2Þ function. (d) The
spectrum in TP trivial phase. There is no crossing at ’ ¼ �.

FIG. 3 (color online). (a) Andreev spectrum for a finite-size
junction ~L ¼ 3 in a TP nontrivial phase. Here ~� ¼ 0, ~� ¼ 1,
~Vx ¼ 2, and U0=� ¼ 1. (b) Andreev spectrum in TP trivial
phase for ~� ¼ 5, ~� ¼ 1, ~Vx ¼ 2, ~L � 1, and U0=� ¼ 1.
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studied the robustness of even and odd crossings numeri-
cally by adding the impurity-scattering potential UðxÞ ¼
U0	ðx� LÞ into Eq. (1). As shown in Fig. 3(b) impurity
scattering opens up a gap in the spectrum indicating that
crossings in the TP trivial phase are not robust. In contrast,
impurity scattering does not affect the crossing in the TP
nontrivial phase [see Fig. 3(a)]. We also considered finite-
size heterostructure ~L ¼ 3, where the spectrum has excited
Andreev states. As shown in Fig. 3(a), the crossing at zero
energy is robust while other crossings are not.

The experimental system shown in Fig. 1(b) can be
viewed as two Majorana quantum wires [11] coupled by
tunneling through the junction. Indeed, consider a SM wire
of length L1 at x > 0. One can diagonalize the single-

particle Hamiltonian (1) and find eigenvalues "	ðpÞ¼
p2
x=2m

���	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2
x þ�2p2

x

p
and eigenvectors 
	ðpÞ ¼

1ffiffi
2

p ½	ðVx þ i�pxÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2
x þ �2p2

x

p
; 1�T . Assuming that only

lowest band "�ðpÞ is occupied, the full HamiltonianH can
be projected to the lowest band yielding

HP¼
X
p

½"�ðpÞcy�ðpÞc�ðpÞþ��ðpÞcy�ðpÞcy�ð�pÞþH:c:�;

where the order parameter ��ðpÞ ¼ i�px�0=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2p2

x þ V2
x

p
has p-wave symmetry. Thus, the present

problem is isomorphic to the Majorana wire considered
by Kitaev [11]. As long as L1 � �, tunneling amplitude of

MFs between the ends of the wire vanishes t / e�ðL1=�Þ and
different fermion parity ground states are almost degener-
ate. When two Majorana wires are brought together as
shown in Fig. 1(b), zero-energy Majorana modes at the
junction are hybridized yielding the spectrum shown in
Fig. 2(c). The presence of MFs in the system can be

characterized by Z2 topological invariant MðH0Þ ¼
ð�1Þ�ð0Þ��ð�Þ [11], where �ð0Þ and �ð�Þ are the number
of negative eigenvalues of H0 at p ¼ 0, �, respectively.
Here � is the momentum at the edge of the Brillouin zone.
The difference �ð0Þ � �ð�Þ counts the number of bands
(mod 2) crossing Fermi level on the interval (0,�). In weak
pairing limit �0 � �, Vx, this definition of TP trivial
(M ¼ þ1) and nontrivial phases (M ¼ �1) is consistent
with exact results for this model discussed after Eq. (4).

The difference in Andreev spectrum should be detect-
able by various experimental techniques. In particular, the

Josephson current in L ! 0 limit is given by In ¼ � 2e
@



@Enð’Þ
@’ [13,14]. The energy E1;2ð’Þ close to ’ ¼ � is well

approximated by 	 cosð’=2Þ. Thus, the current carried by
the quasiparticle state n at ’ ¼ � is maximum in the TP
nontrivial phase in contrast to the TP trivial case where
In ¼ 0, see Fig. 2(b). This phenomenon was dubbed frac-
tional Josephson effect [11,16,17]. In reality, however,
there are processes changing fermion parity, and current
will fluctuate between I	 ¼ 	I with switching time �.
Such processes were studied in the context of SC qubits
[18], where the fermion parity switching time � was mea-

sured experimentally yielding � > 1 ms at T ¼ 20 mK in
Al. The random telegraph signal of Josephson current can
be measured by inductively coupling the SQUID to the rf-
driven tank circuit [see Fig. 1(c)] and monitoring in real
time the impedance of the circuit, which depends on ef-

fective Josephson inductance L�1
J ð’Þ ¼ 4�2

�2
0

@2Eð’Þ
@’2 [19]. For

typical parameters of InAs m� � 0:04me, � � 0:1 eV �A

corresponding to the length scale @
2

m�� � 100 nm and Vx �
1 K, �0 � 1 K, the critical current Ic � 10 nA and

jLðminÞ
J ð’Þj � 10–100 nH. The Josephson inductance

LJð’Þ can be probed by small-amplitude phase oscillations
with the frequency ! satisfying ! � �E� 10 GHz (for
adiabatic approximation to hold) [20] and ! � 1=� (to
resolve current fluctuations). Thus, this experimental tech-
nique can be used to distinguish the Andreev spectrum in
TP distinct phases and observe the phase transition we
predict.
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