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A simple and very flexible variational approach to the out-of-equilibrium quantum dynamics in strongly

correlated electron systems is introduced through a time-dependent Gutzwiller wave function. As an

application, we study the simple case of a sudden change of the interaction in the fermionic Hubbard

model and find at the mean-field level an extremely rich behavior. In particular, a dynamical transition

between small and large quantum quench regimes is found to occur at half-filling, in accordance with the

analysis of Eckstein et al., Phys. Rev. Lett. 103, 056403 (2009), obtained by dynamical mean-field theory,

that turns into a crossover at any finite doping.
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Introduction.—Triggered by the enormous advances in
the physics of ultracold atomic gases [1], time-dependent
nonequilibrium phenomena in strongly interacting quan-
tum systems have recently become of greatest interest. The
possibility of artificially engineering many-particle quan-
tum states with tunable interactions and almost perfect
isolation from the environment gives the chance of probing
directly in the time domain the quantum dynamics follow-
ing an external perturbation [2]. While early experiments
focused mainly on bosonic systems [3] or fermionic con-
densates [4], the recent experimental realization of a fer-
mionic Mott insulator [5] has opened the way to investigate
out-of-equilibrium phenomena in electron systems too [6].
From a theoretical perspective, these experiments raise
several intriguing questions touching quantum dynamics
at its roots. Indeed, when driven out of equilibrium, inter-
acting quantum systems can display peculiar dynamical
behaviors or even be trapped into metastable configura-
tions [7] that differ completely from their equilibrium
counterpart. The simplest way one could imagine to induce
a nontrivial dynamics is through a so-called quantum
quench. Here the system is first prepared in the ground
state of some given HamiltonianH i, and then suddenly let
evolved under the action of a new Hamiltonian Hf.

Recently, quantum quenches have been the subject of
vast literature focusing on integrable systems [8,9], one-
dimensional models [10–12], or systems close to a quan-
tum criticality [13]. The interest in these classes of non-
equilibrium problems relies both on the dynamics itself
[14], as well as on the long-time properties where the issue
of thermalization, or its lack of, is still highly debated
[15,16]. For what concerns strongly correlated electrons
in more than one dimension, the subject is still largely
unexplored and progress has been made only recently.
The single band fermionic Hubbard model is likely the
simplest lattice model of correlated electrons embodying
the competition between metallic and insulating behavior
driven by a local Hubbard repulsion U. Its Hamiltonian
reads

H ðtÞ ¼ �X

�

X

hi;ji
tijc

y
i�cj� þUðtÞX

i

ni"ni#: (1)

In two pioneering works [17,18], the response of a Fermi
sea to a sudden switch-on of the Hubbard U has been
studied in infinite dimensions using, respectively, the
flow-equation method and the dynamical mean-field theory
(DMFT). Results suggest the existence of two different
regimes in the real-time dynamics depending on the final
interaction strength Uf. At weak coupling [17], the sys-

tems are trapped at long times into a quasistationary regime
where correlations are more effective than in equilibrium.
This prethermalization phenomenon has been confirmed
by DMFT results [18], which further indicate a true dy-
namical transition above a critical Ufc towards another

regime with pronounced oscillations in the dynamics of
physical quantities. These intriguing results have been so
far restricted to a quench starting from a noninteracting
system (Ui ¼ 0Þ and, more importantly, limited to rather
short accessible time scales and weak quenches, thus leav-
ing open many important issues.
A simple and flexible approach, although less rigorous

than, e.g., DMFT, is thus extremely desirable and this is
actually the aim of the present work. Specifically, here we
propose a variational approach to the out-of-equilibrium
dynamics of a correlated electron system based on a proper
extension of the Gutzwiller wave function. We apply this
technique to study the interaction quench in the Hubbard
model, where we find a rich behavior featuring a transition
in the real-time dynamics at a critical quench line UfcðUiÞ,
in accordance with Ref. [18] at Ui ¼ 0. Remarkably, a
finite doping completely washes out this transition, leaving
behind only a crossover from weak to strong coupling.
Variational approach to quantum dynamics.—Many ba-

sic concepts in the theory of strongly correlated systems,
like, e.g., the Brinkman-Rice scenario for the Mott tran-
sition [19], have been originated from calculations based
on a very simple and physically transparent variational
approach introduced in the 1960’s by Gutzwiller. This
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approach has been so far applied only at equilibrium or at
most in the linear response regime [20], but it turns out to
be so flexible to allow for full out-of-equilibrium
calculations.

For simplicity, we assume initially a many-body wave
function j�0i, which, for times t > 0, is let evolve with a
Hamiltonian H that includes sizable on-site interactions.
In the spirit of the Gutzwiller approach, we make the
following variational ansatz for the time-dependent wave

function j�exactðtÞi ¼ e�iH tj�0i
j�exactðtÞi ’ j�ðtÞi ¼ Y

i

e�iSiðtÞP iðtÞj�ðtÞi; (2)

where j�ðtÞi is a time-dependent Slater determinant. P iðtÞ
is a Hermitian operator that acts on the Hilbert space of site
i and controls the weights of the local electronic configu-
rations. SiðtÞ is also Hermitian and we assume it depends
on some variables �i�ðtÞ such that

@

@�i�
e�iSi ¼ �iOi�e

�iSi ;

whereOi� is any local Hermitian operator. Since (2) is just
a variational ansatz, it does not solve the full Schrödinger
equation. Our proposal is to determine the variational
parameters by requiring: (i) that the Heisenberg equations
of motion of the local operators Oi� are satisfied when
averaging over (2); (ii) that the average energy E ¼
h�ðtÞjH j�ðtÞi is, as it should be, conserved during the
evolution. Since, by definition,

@

@�i�
eiSiH e�iSi ¼ ieiSi½Oi�;H �e�iSi ;

it follows that

@Oi�

@t
¼ �ih�exactðtÞj½Oi�;H �j�exactðtÞi

� �ih�ðtÞj½Oi�;H �j�ðtÞi ¼ � @E

@�i�

; (3)

where the equivalence is our variational assumption.
Within the Gutzwiller approximation [21], which is exact
in the limit of infinite coordination lattices, E ¼
h�ðtÞjH �ðtÞj�ðtÞi, where H �ðtÞ is a noninteracting
Hamiltonian that depends on all time-dependent varia-
tional parameters defining P i and Si. In general, these
parameters can be expressed in terms of �i� and Oi�. If
we impose that j�ðtÞi is the solution of the Schrödinger
equation

� i
@

@t
j�ðtÞi ¼ H �ðtÞj�ðtÞi; (4)

and furthermore that

@�i�

@t
¼ @E

@Oi�

; (5)

conservation of energy follows automatically. Therefore,
�i� and Oi� act like conjugate variables and the energy
functional E as their effective Hamiltonian.

As a simple application of the above variational scheme,
we assume H to be the Hubbard model (1) at half-filling
with Uðt � 0Þ ¼ Ui � 0 and Uðt > 0Þ ¼ Uf > Ui, and

furthermore we limit our analysis to homogeneous para-
magnetic wave functions. In the limit of infinite coordina-
tion lattices, one can compute exactly average values on
the variational wave function provided the following con-
ditions are imposed [21,22]

h�ðtÞjP 2
i ðtÞj�ðtÞi ¼ 1; h�ðtÞjP 2

i ðtÞcyi�ci�j�ðtÞi ¼ 1
2:

We assume P iðtÞ ¼ P
2
n¼0 �i;nðtÞP i;n, where P i;n is the

projector at site i onto configurations with n ¼ 0; . . . ; 2
electrons and SiðtÞ ¼

P
2
n¼0 �i;nðtÞP i;n, which implies that

�i;nðtÞ plays the role of the conjugate variable of the

occupation probability Pi;n ¼ h�ðtÞjP i;nj�ðtÞi. From the

constraints above it follows that Pi;0 ¼ Pi;2 and Pi;1 ¼ 1�
2Pi;2. We define Pi;2 ¼ ð1� cos�iÞ=4 and set �i;0 ¼
�i;2 ¼ �i while �i;1 ¼ 0. Using �i and �i as variational

parameters, one finds the average energy [21]

E ¼ Uf

4

X

i

ð1� cos�iðtÞÞ

�X

ij

wijðtÞ sin�iðtÞ cos�iðtÞ sin�jðtÞ cos�jðtÞ; (6)

where wijðtÞ ¼ tij
P

�h�ðtÞjcyi�cj� þ H:c:j�ðtÞi. One rec-

ognizes in (6) the mean-field energy of an Ising model in a
transverse field

H I ¼
Uf

4

X

i

ð1� �z
i Þ �

X

ij

wijðtÞ�x
i �

x
j ; (7)

where h�z
i i ¼ cos�i and h�x

i i ¼ sin�i cos�i. This connec-
tion can be established rigorously at the variational level
[23], and agrees with the Z2-slave-spin theory recently
introduced [24,25]. Therefore, it is not surprising that the
equations of motion that we obtain through Eqs. (3) and (5)
are just those of the Ising model h@t�a

i i ¼ �ih½�a
i ;H I�i

within the mean field. In other words, under the above
assumption of homogeneous and paramagnetic wave func-
tions, a quantum quench in the half-filled Hubbard model
is equivalent, within the Gutzwiller variational scheme, to
a quench in a Ising model in the presence of a transverse
field. In particular, if j�ðtÞi is taken to be the half-filled
Fermi sea, then wijðtÞ ¼ w and (7) is the conventional

ferromagnetic Ising model with constant and uniform ex-
change w and transverse field Uf=4. Quantum quenches of

the transverse field have been recently investigated in one
dimension [9] and on a fully connected lattice [26]. In the
following we assume that the system is prepared in the
metallic variational wave function that optimizes (1) with
U ¼ Ui < Uc, where Uc is the variational estimate of the
Mott transition.
This corresponds to initial values �ið0Þ ¼ 0 and

cos�ið0Þ ¼ Ui=Uc � ui for the coupled equations:

2 _� ¼ Uc cos�cos
2��Uf and 2 _� ¼ Uc sin� sin� cos�.

We note that, apart from the trivial case in which
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Uf ¼ Ui, these equations admit a nontrivial stationary

solution � ¼ 0 and cos2� ¼ Uf=Uc ¼ uf, which is com-

patible with the initial conditions only when uf ¼ ufc ¼
ð1þ uiÞ=2. It turns out that ufc identifies a dynamical

critical point that separates two different regimes similarly
to a simple pendulum. When uf < ufc, 2�ðtÞ oscillates

around the origin, while, for uf > ufc, it performs a cyclic

motion around the whole circle.
In order to characterize the different regimes, we focus

on three physical quantities, the double occupancy DðtÞ ¼
ð1� cos�ðtÞÞ=4, the quasiparticle residue ZðtÞ ¼
sin2�ðtÞcos2�ðtÞ and their period of oscillation, T .

While detailed calculations will be presented elsewhere
[23], in the rest of the Letter we just sketch the results of
the mean-field dynamics. Let us start from the weak cou-
pling side ui < uf < ufc, see top panel in Fig. 1, where

both DðtÞ and ZðtÞ display small oscillations. Their ampli-
tude and period increase with the strength of the quench

�u ¼ uf � ui, the latter reading T ¼ 4
ffiffi
2

p
KðkÞffiffiffiffiffiffiffi
Zð0Þ

p , where

KðkÞ is the complete elliptic integral of the first kind
with argument k2 ¼ 4uf�u=Zð0Þ. For �u ! 0 we find a

linear increase T ’ T 0ð1þ ui�u=Zð0ÞÞ with T 0 ¼
4�=

ffiffiffiffiffiffiffiffiffiffi
Zð0Þp

.
Conversely, when quenching above the critical value,

uf > ufc, a novel strong-coupling dynamical behavior

emerges. Here oscillations become faster, their period

T ¼ 4Kð1=kÞ= ffiffiffiffiffiffiffiffiffiffiffi
uf�u

p
now decreases as a function of

�u. In particular, for uf � ui, we get T ’ 2�
uf

smoothly

matching the atomic limit result. The oscillation amplitude
of DðtÞ decreases with uf, which results into a frozen

dynamics in the infinite quench limit [7], while quasipar-

ticle weight ZðtÞ still shows large oscillations even for
uf ! 1, mainly reflecting the unbounded dynamics of

the phase �ðtÞ.
Remarkably, the weak and the strong-coupling regimes

are separated by a critical quench line ufc at which mean-

field dynamics exhibits exponential relaxation. Indeed,
upon approaching this line from both sides, the period T
diverges logarithmically, T ’ 4ffiffiffiffiffiffiffi

Zð0Þ
p logð 1

juf�uc
f
jÞ. Right at

criticality, uf ¼ ufc, the mean-field dynamics can be inte-

grated exactly. The result gives DðtÞ ¼ Dð0Þð1�
tgh2ðt=�?ÞÞ; the double occupation relaxes exponentially
to �D ¼ 0 pushing also �Z ! 0, with a characteristic time

scale �? ¼ 2=
ffiffiffiffiffiffiffiffiffiffi
Zð0Þp

that increases upon approaching the
Mott Insulator.
We now turn to discuss long-time average properties of

the Gutzwiller mean-field dynamics that we define as �O ¼
limt!1 1

t

R
t
0 dt

0Oðt0Þ. The analytical expressions [23] of �D

and �Z are shown in Fig. 2. At weak coupling, we find �D ¼
Dð0Þ½1þ uc

f

uf
ðEðkÞ�KðkÞ

KðkÞ Þ�, where EðkÞ is the complete elliptic

integral of the second kind and k2 is the same as before. In
addition, due to energy conservation, the knowledge of �D
completely fixes the average quasiparticle weight �Z ¼
Zð0Þ þ 8ufð �D�Dð0ÞÞ.
It is interesting to consider first the small quench limit

�u ! 0. We find that, given Dð0Þ ¼ ð1� uiÞ=4 the initial
equilibrium value, �D ’ Dð0Þ � �u=4 ¼ ð1� ufÞ=4,
namely, tends to the equilibrium value corresponding to
the final interaction. Hence the prethermalization result
[17] for the quasiparticle weight �Z immediately follows.
Indeed, quenching from a noninteracting Fermi sea, ui ¼ 0
hence Zð0Þ ¼ 1, we find that the nonequilibrium �Z is
reduced twice more than its equilibrium value at Uf.
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FIG. 1 (color online). Left Panels: Gutzwiller mean-field dy-
namics at half-filling for quasiparticle weight ZðtÞ (black line)
and double occupation DðtÞ (dashed red line) for quantum
quenches from ui ¼ 0:25 to uf ¼ 0:35 (top panel) and uf ¼
1:25 (bottom panel). Right Panel: Period of oscillations at half-
filling and for a finite doping � � 0. Note the logarithmic
singularity at ufc for � ¼ 0 (see main text) which is cut-off by

finite doping.
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FIG. 2 (color online). Average double occupation �D (top) and
quasiparticle weight �Z (bottom) as a function of uf at fixed ui ¼
0:0, 0.5. We show results at half-filling (full lines) that display a
sharp transition at ufc, as well as at finite doping (dashed lines)

where only a crossover remains. We also plot the zero tempera-
ture equilibrium results for � ¼ 0 (red points).
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For large quenches, the average double occupancy �D
increases as a function of the final interaction uf, �D ¼
Dð0Þ � 1

2 ðuf � uiÞð1� Eð1=kÞ=Kð1=kÞÞ, eventually ap-

proaches its initial value Dð0Þ for uf ! 1. A similar

behavior is found for �Z, which is, however, further reduced
by a factor 1=2 with respect to the initial value Zð0Þ due to
the freely oscillating behavior of the phase. We find there-
fore that, for large quantum quenches, the dynamics retains
memory of the initial condition and thermalization is pre-
vented by a dynamical blocking.

Finally, for quenches close to ufc, both �D and �Z are very

small, vanishing as 1= logjuf � ufcj on approaching the

critical point. Namely, ufc not only signals a transition in

the dynamics but also identifies the critical interaction at
which the quenched system shows genuine Mott insulating
behavior.

Away from half-filling, the dynamical equations become
more cumbersome [23]. However, key features can be
easily derived even without resorting to a numerical inte-
gration. In particular, we find that any finite doping turns
the half-filled dynamical critical point into a crossover. For
instance, the logarithmic singularity of the oscillatory pe-
riodT is cutoff by any finite doping, as shown in Fig. 1. As
a consequence, the singular behavior of the average values
across the half-filling transition is smoothed into a cross-
over at finite doping; see Fig. 2.

Discussion.—It is worth discussing the above results in
light of those recently obtained by DMFT [18].
Remarkably, our variational ansatz (2) seems to catch
many nontrivial effects observed in DMFT. In particular
the existence of two different regimes separated by a real
dynamical transition at ufc, already suggested in [18],

clearly emerges from our mean field theory. We note,
however, that the suppression of quantum fluctuations,
which is at the ground of our results, give rise to an over-
simplified periodical dynamics that lacks relaxation. In this
respect DMFT, which can treat exactly all local quantum
fluctuations, works much better and turns these oscillations
into a true relaxation. We guess that a similar result could
be obtained from our variational treatment, for example, by
allowing fluctuations in the Fermi sea and treating the
quantum Ising model beyond the simplest mean field level
[24]. Finally, we notice that the Ising analogy provides a
simple interpretation of the dynamical transition, at least
from a local DMFT-like point of view. Indeed, if we
assume that the role of the neglected quantum fluctuations
is to provide dissipation for the two-level system described
by the local Ising variable, the two dynamical regimes
found by DMFT resemble those in the phase diagram of
the spin-boson model [27].

Conclusion.—We introduced a variational approach to
the out-of-equilibrium dynamics in strongly correlated
electron systems. Using a time-dependent Gutzwiller an-
satz we address the problem of a sudden change of the
interaction in the fermionic Hubbard model finding a dy-
namical transition at half-filling. Our results provide a

simple and intuitive mean-field theory for the quench
dynamics in interacting Fermi systems.
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[23] M. Schirò and M. Fabrizio (to be published).
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