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The nonequilibrium dynamics of an ion chain in a highly anisotropic trap is studied when the transverse

trap frequency is quenched across the value at which the chain undergoes a continuous phase transition

from a linear to a zigzag structure. Within Landau theory, an equation for the order parameter,

corresponding to the transverse size of the zigzag structure, is determined when the vibrational motion

is damped via laser cooling. The number of structural defects produced during a linear quench of the

transverse trapping frequency is predicted and verified numerically. It is shown to obey the scaling

predicted by the Kibble-Zurek mechanism, when extended to take into account the spatial inhomogene-

ities of the ion chain in a linear Paul trap.
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The nonequilibrium statistical mechanics of long-range
interacting systems is one of the challenging problems in
statistical physics [1]. Nevertheless, close to a continuous
phase transition it is sometimes possible to use concepts of
equilibrium statistical mechanics in order to make some
predictions for the system when the value of a control
parameter is quenched through the critical value. The
Kibble-Zurek mechanism (KZM) has become a useful
paradigm in this arena, accounting for a variety of phe-
nomena ranging from the formation of massive particles in
the early Universe [2] to the vortex formation in superfluid
helium [3]. The model applies to systems with a continu-
ous phase transition, which is well described within
Landau theory [4], and allows one to estimate the density
of defects which are formed when quenching the control
field �t across the critical value.

In a nutshell, by comparing the characteristic time �Q of

change of the control field �t with the relaxation time scale
�ð�tÞ of the system at equilibrium [5], one identifies the
corresponding freeze-out time scale, t̂, which separates the
regime in which the system follows adiabatically the
quench from the regime in which the system behaves as
if the dynamics was frozen out. The correlation length � at
the value of the control field �tðt̂Þ then gives the character-
istic length over which the system remains correlated, and
hence the density of defects. The KZM prediction of the
density of defects has been verified in a variety of systems
numerically [6,7] and experimentally [8]. Recently, the
model has been extended to describe the quench dynamics
in a quantum phase transition [9]. The standard model of
topological defects formation in homogeneous phase tran-
sitions must be revised whenever the quench is local or the
critical control parameter (and the resulting transition)

become spatially dependent [10,11]. This situation is argu-
ably ubiquitous in nature and the main focus of this Letter.
In this Letter we study the out-of-equilibrium dynamics

in an inhomogeneous laser-cooled Wigner crystal,
quenched through its critical point. Here, we propose a
novel system to test the KZM in a inhomogeneous phase
transition which enjoys an unprecedented level of experi-
mental control and amenability for defect detection. The
Wigner crystal is composed of single-charged ions, which
are confined in Paul or Penning traps and mutually repel
via an unscreened Coulomb interaction [12]. In highly
anisotropic traps, the ions can form a linear chain, which
has a mechanical instability to a degenerate chain, with a
zigzag structure, controlled by the density or by the trans-
verse trap frequency [13,14]. The form of the corre-
sponding distribution of charges at equilibrium is shown
in Fig. 1(a), for the case in which the ions are confined by a
linear Paul trap. At equilibrium, such instability is a

FIG. 1 (color online). (a) Charge distribution at equilibrium of
an ion chain in a linear Paul trap for decreasing transverse
trapping frequency (from top to bottom). Because of harmonic
trapping, the density of ions is larger in the center, where the
repulsion is larger and the zigzag instability is first evident.
(b) Charge distribution after a quench through the critical
transverse frequency exhibiting both types of structural defects
(solid lines): kink (light) and antikink (dark).
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second-order phase transition [13,15,16]. We determine
the scaling of the density of defects after crossing such
transition as a function of the cooling rate and of the
quenching rate of the transverse trap frequency. In particu-
lar, spacelike separated regions may develop zigzag struc-
tures with different orientations which are separated by a
kink. The classical and quantum properties of these kinks
were recently studied in [17], some of which are displayed
in Fig. 1(b). These regions are the analogs of magnetic
domains in a ferromagnetic material and the interface
between domains is a structural defect.

The system we consider is composed of N ions of mass
m, charge Q, and coordinates rn ¼ ðxn; yn; znÞ that are
confined along the x axis by a strongly anisotropic, radial
trap. The Lagrangian describing the dynamics of the ions
is L ¼ T � V where the kinetic and potential energies
take the form, respectively, T ¼ 1

2m
P

n _r
2
n and V¼

1
2m

P
n½�2x2nþ�2

t ðy2nþz2nÞ�þP
n�n0Q

2=ð2jrn�r0njÞ, with

� and �t the frequency of the axial and the transverse
confinement. At sufficiently low temperature and suffi-
ciently large values of �t the ions form a chain along the
x axis. In the local density approximation, the linear
density nðxÞ is approximated by the function nðxÞ ¼
3
4
N
L ð1� x2

L2Þ with L the half-length of the chain and x the

distance from the center [18]. The interparticle spacing,
aðxÞ ¼ 1=nðxÞ, is a slowly varying function of the position.
In the thermodynamic limit, in which að0Þ ! a as the
number of particles N ! 1, one recovers in the center of
the trap the statistical mechanics and dynamical properties
of an infinite chain with uniform interparticle distance a
[13,19]. The mechanical stability of the ion chain is war-
ranted provided that the transverse trap frequency fulfils

the relation �t > �ðcÞ
t , where �ðcÞ

t is a function of the axial

trap frequency and the ion density. At �ðcÞ
t the chain under-

goes a transition to a zigzag configuration, with transverse
size b [20]. In the thermodynamic limit, the structural
change is a second-order phase transition, with �t a control
field and b the order parameter [13]. In particular, the

critical value of the transverse frequency is given by �ðcÞ
t ¼

!0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
7�ð3Þ=2p ¼ ð2:051 . . .Þ!0, � being the Riemann-zeta

function and !0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2=ma3

p
. Inside a linear Paul trap

the zigzag instability occurs first at the center of the trap,
where the density is larger, and at lower values of �t

extends towards the edge of the chain, as sketched in
Fig. 1(a). In this case the transverse size of the chain is
position dependent, b ¼ bðxÞ.

The dynamics around the mechanical instability can be
described by a Ginzburg-Landau (GL) equation for the
position-dependent transverse size bðxÞ of the zigzag
chain, which is here described by a continuum field
c ðxÞ. The GL equation is based on the assumption of a
coarse-grained length scale �x, with �x � aðxÞ and
aðxÞ � j�xðdaðxÞ=dxÞj, and extends the theory in
Ref. [13] to the inhomogeneous case. Within the local
density approximation, we identify a local value of the

critical transverse frequency �ðcÞ
t ðxÞ2 ¼ 7�ð3Þ=2Q2=

ðmaðxÞ3Þ and write the Lagrangian L ¼ R
dxLðxÞ with

L ðxÞ ¼ 1

2
�ðxÞ X

�¼y;z

f½@tc �ðxÞ�2 � hðxÞ2½@xc �ðxÞ�2

� �ðxÞc �ðxÞ2 �AðxÞc �ðxÞ4g (1)

where c �ðxÞ gives the zigzag size at � ¼ y, z as a function
of the position, �ðxÞ ¼ mnðxÞ is the linear mass density,

and �ðxÞ ¼ �2
t � �ðcÞ

t ðxÞ2. The parameter hðxÞ ¼ !0aðxÞ�ffiffiffiffiffiffiffiffiffi
log2

p
is a velocity, and determines the speed with which a

transverse perturbation propagates along the chain. Finally,
the parameter AðxÞ ¼ ½93�ð5Þ=32�!2

0=aðxÞ2 is positive

and determines the value of the order parameter when
�ðxÞ< 0. The Lagrangian density LðxÞ has the form of a
GL equation.
The minimal energy solution of Eq. (1) fulfills the

relation c �f�ðxÞ þ 2AðxÞ½ðc yÞ2 þ ðc zÞ2�g ¼ 0. It al-
ways admits the solution c �ðxÞ ¼ 0 corresponding the
ions on the x axis, which is stable only for �ðxÞ> 0.
For �ðxÞ< 0 there is a continuous manifold of solutions

of the form, %ðxÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi��ðxÞ=2AðxÞp
, with %ðxÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðc yÞ2 þ ðc zÞ2p

, corresponding to the zigzag chain [13].
Within Landau theory [4], the correlation function of
the linear chain, evaluated for a static perturbation at a

point, decays exponentially with the length scale ��
a!0=

ffiffiffiffiffiffiffiffiffi
�ðxÞp

.
Within the GL description, we now assume that the

transverse trap frequency �t undergoes a change in time
in the interval [� �Q, �Q], sweeping through the mechani-

cal instability from the linear to the zigzag chain, such that

�2
t ¼ �ðcÞ

t ð0Þ2 � �0
t
�Q

and �ðcÞ
t ð0Þ2 � �0 > 0. In this pa-

rameter regime, we can use the time-dependent parameter

�ðx; tÞ ¼ �2
t ðtÞ � �ðcÞ

t ðxÞ2 inside the GL equation. We also
assume that the chain is in contact with a thermal reservoir
at low temperature T, which is warranted by laser cooling
the chain motion. More specifically, we assume that some
ions of the chain are Doppler cooled such that the energy
distribution of the crystal modes obeys a Fokker-Planck
equation [21]. The equation of motion for the field can be
then written as

@2t c �hðxÞ2@2xc þ�@tc þ�ðx;tÞc þ2AðxÞc 3¼"ðtÞ
(2)

where the scalar 	ðtÞ is the Langevin force, describing the
diffusion due to laser cooling, such that its moments fulfill
the relations h"ðtÞi ¼ 0, h"ðtÞ"ðt0Þi ¼ 2�
BT�ðt� t0Þ=m,
where 
B is Boltzmann constant and T is the temperature
of Doppler cooling [22]. In deriving Eq. (2), we have
neglected axial distortions of the charge density due to
the value of �t. We have also taken that the trap frequency
in the z axis is much larger than the y axis so that c ðxÞ is
now along y.
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We now estimate defect formation following a quench in
the tranverse trapping frequency . The nucleation of defects
in such a scenario resembles the formation of solitons in a
cigar-shaped Bose-Einstein condensate recently discussed
by Zurek in Ref. [11]. The transverse frequency is
quenched through the critical point at different times
along the chain due to the inhomogeneous charge distribu-
tion in the system. This gives rise to a propagating front
along the axis from the center to the edges, whose coor-
dinates (xF, tF) satisfy �ðxF; tFÞ ¼ 0. The front velocity
vF, at which the mechanical instability propagates,
can be estimated by taking the ratio between the character-
istic length of the control parameter, ½@x�ðx; tÞ=�ðx; tÞ��1,
and the characteristic time scale at which it changes,
½@t�ðx; tÞ=�ðx; tÞ��1, giving vF � @t�ðx; tÞ=@x�ðx; tÞ. For
the spatial dependence of the local critical frequency

�2
cðxÞ ¼ �2

cð0Þ½að0Þ=aðxÞ�3, the front velocity vF /
jd�ðcÞ

t ðxÞ2=dxj�1
xF takes the form vF �

�0

�Q
jd�2

cðxÞ=dxj�1
xF � ½L�0=6�

ðcÞ
t ð0Þ2�Q�½1=Xð1 � X2Þ2�,

with X ¼ jxFj=L (which is valid away from the edges).
Whenever the transition is homogeneous, vF ! 1 and the
standard scenario of defect formation of Kibble-Zurek
applies: the density of defects in this case is simply deter-
mined by the correlation length at the freeze-out time scale
t̂. Elsewhere, the sound velocity comes into play. We first
estimate the time scale t̂, at which the dynamics stop being

adiabatic, by equating the time scale �= _� to the relaxation
time �. Two regimes can be identified, which refer to the
relation between the damping ratio and the value of � at t̂.

In the so-called overdamped regime [6], when � �ffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð0; t̂Þp

, one finds t̂ ¼ ð��Q=�0Þ1=2, which sets the

freezed-out correlation length �̂x ¼ a!0=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij�ðx; t̂Þjp ¼

a!0ð��0=�QÞ�1=4. Then, the characteristic velocity of a

perturbation becomes v̂� �̂x=�̂x � a!0ð�0=�
3�QÞ1=2.

The condition for kinks formation reads vF

v̂x
�Ao=½Xð1�

X2Þ2�> 1 with Ao ¼ L=½6�ðcÞ
t ð0Þ2a!0�0�ð��0

�Q
Þ3=4. One

can estimate the effective size of the chain 2X̂� where the
homogeneous KZM applies, by setting vF=v̂x ¼ 1, and

assuming X̂� � 1 whence it follows that X̂� �Ao. The
density of kinks obeys then the relation

do � 2X̂�
�̂

� L

3�ðcÞ
t ð0Þ2a2!2

0

��0

�Q
: (3)

Note that this leads to a stronger dependence on �Q than

in the homogeneous case, where defects can nucleate

all over the system, and do � �̂�1 ¼ 1
a

1
!0

ð�0�
�Q
Þ1=4. By con-

trast, in the underdamped regime [� � ffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð0; t̂Þp

] [6], the

relaxation time diverges as � ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij�ðx; tÞjp

, which

leads to the freeze-out time scale t̂ ¼ ð�Q=�0Þ1=3. At this
time scale, the correlation length reads �̂x ¼
a!0ð�Q=�0Þ1=3 leading to a uniform sound velocity v̂x ¼
�̂x=�̂z ¼ a!0. The causality argument implies that

vF=v̂x ¼ Au=½Xð1� X2Þ2�> 1, in terms of the parame-
ter Au ¼ L

6�ðcÞ
t ð0Þ2a!0�0

. For the purpose of deriving a scal-

ing of the density of defects, we assume that formation of
kinks arises only in a small central region 2X� � 1 where

X̂� ’ Au, so that

du � 2X̂�
�̂

¼ L

3�ðcÞ
t ð0Þ2a2!2

0

�
�0

�Q

�
4=3

; (4)

which should be compared with the density of defects in

the homogeneous case du � �̂�1 ¼ 1
a

1
!0

ð�0

�Q
Þ1=3. We shall

refer to the mechanism above as the inhomogeneous KZM
(IKZM), whose main prediction is the scaling found in
Eqs. (3) and (4), for the overdamped and the underdamped
cases, respectively, and which are in dramatic contrast with
their homogeneous counterparts.
To test the IKZM we next consider the dynamics of the

structural phase transition for ions in a linear Paul trap,
which are continuously Doppler cooled and whose trans-
verse square-frequency is driven through a linear quench as
above. The motion dynamics is given by the set of coupled
Langevin equations m€ri þ @riVðfrig; tÞ þm� _ri þ "ðtÞ ¼
0, (i ¼ 1; . . . ; N) where ri ¼ ðxi; yiÞ, V is the full
Coulomb and trap potential, and "ðtÞ is Langevin force

(whose amplitude we take " ¼ 0:05 l0�
3=2 with l30 ¼

Q2=m�2), and � is the cooling rate [21]. At t ¼ 0 the chain
is in the classical ground state, with all the ions at the
equilibrium position satisfying @riVðfrigÞ ¼ 0. The value

of �ðt̂Þ is chosen such that the equilibrium configuration is
linear, but close to the critical frequency below which the
ground state becomes doubly degenerated. The system is
then driven through the transition. Typical defects are
shown in Fig. 1(b), and come in two varieties, Z2 kinks
(of topological charge � ¼ þ1) and antikinks (� ¼ �1).
These defects resemble the nonmassive kinks of the
Frenkel-Kontorova model with a transversal degree of
freedom which can be described by an effective �4 theory
for the translational displacement [17,24]. When defects
appear near the edges of the chain, they might be lost in the
linear part. To minimize defect losses at the edges of the
chain (see below), the density of defects d (number of
defects over the total number of ions) is computed once
the average absolute transverse displacement of the ions
hyi ¼ P

i2Cjyij=NC approaches 90% of that of the ground
state in the final trap. C denotes the set of NC central ions
which would reach the zigzag structure in an adiabatic
transition, and where the formation of defects is studied.
The average density of defects d over different realizations
such as the one in Fig. 1(b) is computed for different values
of �Q, and a least-squares fit to the list of data is used to

extract the exponent governing the scaling. Numerical
simulations in Fig. 2 are in good agreement with the
IKZM scaling derived in Eqs. (3) and (4). Interactions
between the defects lead to a saturation of the density
and deviations from IKZM. Further, the applicability of
IKZM is restricted by the following effects. (a) Axial and
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transverse modes are coupled since the ions shift in the
axial direction towards the center of the trap as the struc-
tural phase transition takes place. (b) The amplitude of the
transverse displacement of the ions increases in the center
of the trap, making the amplitude of the effective Peierls-
Nabarro potential seen by a kink [24] to decrease towards
the edges of the chain, and leading to transport of defects
and losses near the edges of the trap. Defect transport
remains even if the longitudinal degrees of freedom of
the ions are frozen on a lattice due to the transverse motion,
and even when the trapping potential makes the inter-ion
spacing homogeneous due to a local correction to the
transverse critical frequency in the finite system.
(c) Scattering between kinks and antikinks can occur lead-
ing to their annihilation, a process particularly relevant in
the underdamped regime which leads to deviations from
the IKZM.

In conclusion, we have proposed an ion crystal as a test
bed for the formation of structural defects governed by the
KZM. This system is far more amenable to experimental
verification and control than other systems with realistic
possibilities to enter the quantum regime. Though the
paradigmatic result for a homogeneous second-order phase
transition can be studied using a ring trap, as in Ref. [20],
the inhomogeneities in a linear Paul trap make an ion
crystal a natural system to study the IKZM mechanism
where the scaling of the number of topological defects as a
function of the quenching rates is dramatically altered, as
we have shown analytically and confirmed by numerical
simulations.
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FIG. 2 (color online). Density of defects for a harmonically
trapped ion chain as a function of the inverse of the sweeping
rate (a) in the overdamped regime (� ¼ 100�), where the slope
in the fit is 0.995 with regression coefficient 1, and (b) in the
underdamped regime (� ¼ 10�), where the slope in the fit is
1.427 with regression coefficient 0.994. The defects are only
considered in the central NC ¼ 30 ions, in order to minimize
defect losses (N ¼ 50, 2000 realizations).
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