
Simulation of Mixing within Drops due to Surface Tension Variations

François Blanchette

School of Natural Sciences, University of California Merced, 5200 N. Lake Road, Merced, California 95343, USA
(Received 4 June 2010; revised manuscript received 13 July 2010; published 12 August 2010)

We present the results of a numerical investigation of the mixing within drops caused by surface tension

variations. With microfluidic applications in mind, we simulate drops surrounded by a fluid of equal

density and viscosity. We investigate both stationary coalescing drops and steadily flowing drops, and

study the influence of drop size ratio, viscous effects, and surface tension variations. We measure the

mixing efficiency using the variance of the concentration distribution and find that surface tension

variations may result in faster mixing than geometric effects.

DOI: 10.1103/PhysRevLett.105.074501 PACS numbers: 47.55.df, 47.51.+a, 47.55.nb

Drop coalescence is a complicated process that has been
studied for decades [1–7]. Depending on the drop size,
velocity, and composition, several outcomes are possible,
most notably bouncing or coalescence, be it total, tempo-
rary or partial. The majority of earlier research has focused
on the evolution of the drop interface, which is arguably
the most important aspect of the coalescence, and undeni-
ably the easiest to observe experimentally.

Another important aspect of drop coalescence is the fate
of the internal fluids, and how well they become mixed [8].
While head on coalescence of identical drops results in
perfectly separated halves in the final drop (by symmetry),
variations in drop sizes and composition may cause sig-
nificant mixing. Such mixing within drops is of particular
importance in microfluidic networks in which droplets are
used as microreactors where chemical or biological reac-
tions may be observed using only tiny quantities of re-
agents [9]. The small size of these apparatus render mixing
difficult, but several designs have been proposed to over-
come this difficulty for flowing drops [10,11]. In the most
basic setting, a drop flows in a straight horizontal tube, and
the upper and lower halves do not mix. To generate mixing,
the centerline separatrix is shifted and symmetry is broken
by means external to the drop. However, a radically differ-
ent mixing mechanism may be used if the reagents within
the drops influence the surface tension of the interface.

Spatially varying surface tension provides an internal
symmetry break for coalescing and flowing drops. The
tangential flow generated by the surface tension mismatch,
the Marangoni effect, can propel a drop and induce vigo-
rous motion within it [12,13]. This effect, at the origin of
Bénard-Marangoni convection, has been used to mix fluid
layers [14,15], and perform manipulations within micro-
fluidic devices [16]. Previous authors have investigated
mixing within drops resulting from externally induced
surface tension gradients [13,17,18]. Significantly, the
time scale of Marangoni effects is very different than that
of geometric mechanisms.

We study here drops where initially different composi-
tion, or temperature, are the only source of surface tension

variation. This eliminates the requirement of spatially or
temporally varying external agents. We investigate both
coalescing and flowing drops and compare the time scales
of classical mixing mechanism with those of surface ten-
sion variations generated mixing. We first describe how the
physical system is simulated numerically.
We consider two miscible liquids, 1 and 2, surrounded

by an outer fluid with which they are not miscible. We
assume that all fluids have identical density, �, and vis-
cosity, �, but we allow liquids 1 and 2 to have different
surface tensions with the outer fluid, �1 and �2, respec-
tively. We introduce a concentration function, C1, describ-
ing the proportion of liquid 1 relative to liquid 2, and let
surface tension depend linearly on C1. While this linear
dependence is not necessarily realistic, our simulations
were found to be rather insensitive to the specific depen-
dence of surface tension on C1.
Following earlier studies [19–21], we model the inter-

face as a forcing term that we add to the momentum
equation of the Navier-Stokes equations. The interface
moves with the flow, and the concentration C1 evolves
under the combined influence of fluid advection and mo-
lecular diffusion. We nondimensionalize the governing
equations using the drop radius, R, as a length scale and

� ¼ ð�R3=�1Þ1=2 as a time scale. The governing dimen-

sionless quantities are the Ohnesorge number, Oh ¼
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�=�1R

p
, characterizing the ratio of viscous to inertial

effects over a time scale �, the surface tension difference
R� ¼ ð�1 � �2Þ=�1, and the Schmidt number Sc ¼ �=�,
with � the diffusivity of liquid 1 into liquid 2. Note that our
simulations may also describe liquids of variable tempera-
ture, if C1 stands for temperature and � for thermal diffu-
sivity. Our assumption of uniform density effectively
nullifies the effects of gravity.
Numerical simulations of this system are performed in

an axisymmetric cylindrical domain with the drop aligned
on its axis. The core of the numerical simulations used here
is identical to those described in [22], where extensive
validation is presented. Diffusion of the field C1 into the
outer fluid is prevented by imposing a symmetry boundary
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condition across a rasterized approximation of the inter-
face. No-slip and zero flux boundary conditions are im-
posed at the solid walls, which are positioned sufficiently
far from the drops that they do not affect the coalescence
process. To estimate the extent to which a drop is mixed,
we use the variance of the concentration functionC1 within
the drop.

We first simulate the coalescence of two stationary
drops. Here, both fluids start from rest as two touching
spheres. A typical velocity generated by the coalescence of
a drop where inertial effects dominate viscous effects is

Uc �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1=�R

p
[4], which here is nondimensionalized to

one. We compare this to the velocity generated by the
mismatch of tangential forces when the two drops have
different surface tensions. We study drops of identical sizes
and observe the magnitude of the tangential velocity after

one nondimensional time unit (
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�R3=�1

p
). We recorded

typical velocities along the interface for various Ohnesorge
numbers and surface tension ratios (Fig. 1).

Over most of the regime investigated here, we find that
the nondimensional tangential velocity is inversely propor-
tional to Oh [Fig. 1(a)], while for Oh< 0:02 it appears to
level off. The tangential velocity grows linearly with R�,
for R� < 0:4, and grows more slowly for larger values. For
R�=Oh< 20, we thus find that the velocity is well approxi-
mated by Ut ¼ 0:05ð�2 � �1Þ=�� and is comparable to,
or less than, velocities generated by the coalescence itself,
with Ut � 1:5Uc. Over this regime, Marangoni forces are
therefore balanced by viscous forces as they cause a thin
layer of fluid to be entrained along the interface. At higher
velocities, we anticipate the tangential force [ð�1 �
�2Þ=R] to be balanced by inertial effects (�U2). As such
a regime is rarely attained in practice, we focus here on the
case where viscous effects balance tangential forces, and
proceed to examine the resulting mixing.

Any asymmetry generates some degree of mixing within
the drop. If the two drops have different sizes, the smaller
drop has a greater internal pressure than the larger one,
which may result in a vortex ring being pushed from the
small into the large drop. However, for the Ohnesorge
number we consider in this study, Oh � 0:005, size dis-

crepancies are not found to generate significant mixing, as
shown in Fig. 2(a). We restricted our study to drops of
initial size ratio greater than 0.6, since smaller drops would
result in partial coalescence [22].
In contrast, a much more significant rearrangement is

generated by drops of different surface tension, Figs. 2(b)–
2(d). In the presence of relatively weak Marangoni effects,
R� � 0:2 for Oh ¼ 0:02, the observed mixing appears to
always follow a similar sequence, the only effect of vary-
ing R� being to determine the speed of the flow. First,
coalescence occurs and the drops become a single larger
oscillating drop, before any significant mixing has taken
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FIG. 1. (a) Dependence on a log scale (linear in inset) of the
dimensionless tangential velocity on the Ohnesorge number with
R� ¼ 0:4. The dashed line has slope �1. (b) Tangential velocity
dependence on R�, with Oh ¼ 0:02.

FIG. 2 (color online). (a) Coalescence of drops with size ratio
0.6, identical surface tensions, and Oh ¼ 0:02. (b), (c), and
(d) Coalescence of equal size drops at Oh ¼ 0:02, with

R� ¼ 0:04 (b), R� ¼ 0:24 (c), and R� ¼ 0:4 (d). Images are � ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�R3=�

p
apart, and the black lines are one initial radius long.
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place. Tangential flows then partially mix the interior.
Motion then comes to a halt shortly after the entire surface
of the drop becomes covered with the fluid of smaller
surface tension [Fig. 2(b)], resulting in a one-time reconfi-
guration of the fluid inside the drop. For moderate
Marangoni effects, 0:2<R� � 0:36, the internal flow gen-
erated by the confluence of the surface flow is sufficiently
strong to create a central jet which reaches the lower end of
the drop and then flares out [Fig. 2(c)]. This induces a more
complicated distribution of fluids 1 and 2, and thus better
mixing. Finally, ifR� > 0:36, the time scale of coalescence
and that of the mixing generated by Marangoni flows are
comparable, and even more complicated interactions take
place [Fig. 2(d)]. More importantly, the central jet is so
vigorous that high surface tension fluid is pushed back onto
the interface even well after coalescence has begun. This
generates new tangential flows, inducing vortical motion
within the drop, which results in much more complete
mixing.

We now turn to study drops flowing in a cylindrical tube
where a pressure gradient generates a steady flow. We first
compute the steady state velocity in and around a drop of
uniform composition, assuming periodic conditions in the
streamwise direction. Once steady state is achieved, we
replace half of the drop with a fluid of different composi-
tion and observe the resulting mixing. Such systems are
fully described by R�, a capillary number, Ca ¼ U��=�1,
where U is the average velocity in the pipe, a Reynolds
number, Re ¼ UR=�, and a Péclet number Pe ¼ UR=�,
which we keep constant.

A number of mixing apparatus rely on geometric designs
that induce pseudochaotic motion within the drops (see
[11] for a review). The time scale associated with such
mixing is tg � R=UðRt=RÞ2, where Rt is the tube radius

and R the drop radius. The mixing results from velocity
differences across the drop, hence the term ðRt=RÞ2. The
time scale of surface tension-driven mixing is unaffected
by the mean flow in which the drop lies, so in the viscous
regime, we have tt ¼ R=Ut � 20R��=��. The ratio of
those time scales is ts=tg � 20Ca=R�ðR=RtÞ2. In experi-

ments, the capillary number must be kept small (less than
0.1) to avoid drop breakup, and a typical value is 0.005
[23,24]. The ratio R=Rt is typically close to unity, though
always less than one. For the mixing induced by the surface
tension mismatch to be dominant, the system must then be
such that

�1 � �2

�1
¼ R� > 20

�
R

Rt

�
2
Ca ¼ 20

�
R

Rt

�
2 ��U

�1

: (1)

Note that for small drop velocities, the mixing due to
Marangoni effects is more likely to become dominant.
Numerical simulations confirm that tangential flows due
to surface tension variations overcome the inner circulation
present in flowing drops when this criterion is met.

Figure 3 illustrates the mixing between the front and
back regions of a drop in a straight cylindrical tube for
even, Fig. 3(a), and uneven surface tensions, Figs. 3(b) and
3(c). We note that the mixing pattern is significantly differ-
ent depending on whether the tangential flow generated by
the surface tension mismatch accentuates or opposes the
circulation generated by the mean flow in the pipe. If the
initial tangential motion is aligned with that of the inner

FIG. 3 (color online). Simulations of a flowing drop with
R=Rt ¼ 2=3, Ca ¼ 2:5� 10�4, Re ¼ 1:5, and Pe ¼ 0:15. In
(a) R� ¼ 0, in (b) R� ¼ 0:05, and in (c) R� ¼ �0:05. Positive
values of R� correspond to tangential flow opposing the drop
motion. Images are �t ¼ 0:035R=U apart.
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circulation [Fig. 3(b), R� > 0], the drop accelerates and the
early stages of mixing occur faster. However, after the
initial mixing, the fluid of lower surface tension quickly
covers the entire drop surface, and the flow inside the drop
returns to that of a drop of homogeneous composition [25].
If the initial tangential flow is opposite the inner circula-
tion, the drop is slowed [Fig. 3(c), R� < 0]. The shear
along the interface is then enhanced, occasionally leading
to the detachment of some fluid from the interface. The
complicated flow pattern resulting from the competition
between external viscous stresses and surface tension mis-
match yields much more complete mixing.

Figure 4 shows the extent of the mixing within the drops
showed in Fig. 3, as well as within similar drops with
smaller Ca. We use as a measure of mixing the standard
deviation of the distribution of C1, normalized by its initial
value. All drops become mixed owing to the inner circu-
lation present in any flowing drop. The presence of
Marangoni stresses slightly accelerates this process when
the tangential flow is aligned with that circulation, but the
effect remains modest. However, if the tangential flow is
opposite the inner circulation and is sufficiently strong, the
mixing is both faster and more complete. Drops of smaller
Ca, or larger surface tension difference, exhibit even
quicker mixing, as the tangential flow is faster and its
effects persist even after the drop is covered with the fluid
of low surface tension.

In conclusion, our simulations demonstrate that signifi-
cant mixing may be induced within drops by surface
tension gradients. Stationary coalescing drops can be
mixed thoroughly if the time scale of tangential flow is
comparable to that of coalescence. For flowing drops in a
tube, significant mixing may be obtained even for small
Reynolds numbers. The time scale of tangential flow gen-
erated by surface tension differences is tm � 20R��=��,
which is comparable or faster than that of mixing by
geometrical devices in microfluidic networks. The extent
of the mixing depends on the capillary number of the drop,

with more viscous drops being more resistant to mixing.
We note that if surface tension gradients are generated
perpendicular to the mean flow, mixing may also be gen-
erated, but the drop will then be displaced laterally and
approach the sidewall, potentially coming into contact with
the solid substrate, an undesirable result.
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FIG. 4. Standard deviation of C1 within the drop (measure of
mixing) as a function of time for various R� and Ca. The cases
with Ca ¼ 2:5� 10�4 are those shown in Fig. 3.
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