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We report two-dimensional localization of exciton polaritons in a coherently pumped planar semi-
conductor microcavity operating in the strong-coupling regime. Two-dimensional polariton solitons exist
despite the opposite dispersion signs along the orthogonal in plane directions. Nonlinearities compensat-
ing the opposing dispersions have different physical origins and are due to the repulsion of polaritons on
one side and due to parametric four-wave mixing on the other. Both of these nonlinearities can support
their respective families of one-dimensional solitons, which coexist with each other and with the two-

dimensional solitons.
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The research into the physical principles of the existence
and evolution of localized structures (LSs) or solitons in
nonlinear systems spans many branches of physical scien-
ces including optics, fluid dynamics, particle physics, and
biology [1]. Depending on the physical setting, localization
can occur in one, two, or three dimensions. Changing the
dimension is often accompanied by qualitative changes of
the LS properties of localized structures and opens up new
research avenues [2].

One of the qualitative principles underpinning the LS
formation is that the dispersion induced broadening is
compensated by a nonlinearity of the appropriate sign,
and if loss is present, then it has to be compensated by
an external energy source. Most generally, if dispersive
spreading happens as for quantum mechanical particles
with positive or negative effective mass, then focusing or
defocusing, or in other words, attractive or repulsive, non-
linearity is required to compensate for the dispersion [2].
There exist many subtle examples, where the above rule is
challenged. For example, gap solitons [2] involve linear
excitations with both positive and negative masses. If para-
metric wave mixing is present, then the nonlinearity is no
longer simply attractive or repulsive, but becomes phase
dependent and leads to solitons with novel properties [3]. If
a system is far from an equilibrium, other unexpected lo-
calization rules can come into play. In particular, the com-
plex one-dimensional Ginzburg-Landau equation [4] has
been shown to have bright solitons with the “wrong” sign
of dispersion. Another research direction is to investigate
the formation of multidimensional L.Ss, when dispersion or
diffraction along different directions in space can have
different signs. This can be arranged by periodic modula-
tion of linear properties, like, e.g., in periodic potentials
[5], or due to interplay of spatial and temporal effects [6].

While most of the recent experimental results and theo-
ries on localized structures have been dealing with optical
or matter waves, there is a growing body of research on
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collective nonlinear dynamics of half-light half-matter ex-
citon polaritons in semiconductor microcavities [7].
Vortices [8], patterns [9], and solitons [10,11] have been
studied in the context of microcavity polaritons. In par-
ticular, our recent work [11] has predicted the existence of
one-dimensional bright polariton solitons in microcavities.
The mechanism of formation of these structures is similar
to that of conventional (light only) cavity solitons [12,13],
but bears important polariton features. In particular, it is
essential for the polariton soliton existence that they have a
sufficiently large momentum, so that the effective mass
along the direction of motion changes from positive to
negative and thus allows for the compensation of the
polariton-polariton repulsion. The effective mass along
the orthogonal direction remains positive, and therefore
the dispersive spreading of the two-dimensional polariton
wave packet in the direction orthogonal to its velocity is
expected. In fact, to combat this spreading we have pre-
viously proposed to use polariton waveguides [11].
However, recent experiments [14] addressing superfluidity
of microcavity polaritons reported some evidence of a
remarkable concurrent phenomenon of the suppressed
and probably canceled polariton dispersion along both
directions in the cavity plane. Dispersion cancellation has
manifested itself in the formation of a moving 2D localized
polariton structure without any confining potential [14].

Our present theoretical study confirms the existence of
2D cavity polariton solitons (CPSs) and initiates the dis-
cussion of their complex physics. This is so far a unique
example where the existence of self-localized states in a
nonequilibrium optical or condensed matter system with
opposite dispersion signs along the two orthogonal direc-
tions is supported experimentally and theoretically. The
coupled dynamics of the linearly polarized (in the cavity
plane) photon E and of the quantum well exciton W field
amplitudes is governed by the following dimensionless
system of equations [7,11]
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FIG. 1 (color online). Red (upper and lower) and blue (middle)
lines in the (€}, k,) plane indicate the dispersion characteristics
of the linear and nonlinear polaritons, respectively. |V, | is the
spectrum corresponding to the 1D parametric soliton shown in
Fig. 6(c).
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where E, and k, are amplitude and momentum of the
external pump beam. A is detuning of the pump frequency
from the identical resonance frequencies of excitons and
cavity. yp, and 7y, are the cavity and exciton damping
constants. Full details of the rescaling into physical units
can be found in [10,11]. A unit of # corresponds to 0.25 ps
and a unit of x to ~1 um, if typical parameters of polariton
experiments with a single InGaAs/GaAs quantum well are
assumed.

The linear polariton eigenstates in the pump free cavity
(E, = 0) are sought in the form E, W ~ ¢ /(@ - Artikortiky,
which gives the two well-known branches of the polariton
dispersion, Q(k,, k,), see, e.g., [7] and the red (upper and
lower) lines in Fig. 1. The upper branch () > 1) is irrele-
vant for our present study, which focuses on the lower
branch (—1 < ) <0). Note that Eqs. (1) do not account
for the saturation of the photon-exciton coupling for high
densities of the latter [15]. It can be shown that this non-
linear effect is important only for the frequencies matching
the upper branch; therefore, it is safe to disregard it here.
The curvature of the Q(k,, k,) surface determines the
linear 2nd order dispersion and the effective polariton
mass. The repulsive nonlinearity of excitons results in the
up-shift of the polariton dispersion, but retains its shape;
see the blue (middle) line in Fig. 1. Fixing k, = 0 (as for
the pump field), one finds that the effective mass is positive
for k, < k, and negative for k, > k; (k; ~ 0.885). We have
previously demonstrated that the homogeneous solution
(HS) of Egs. (1) is bistable [see Fig. 2(a)] and there exist
CPSs moving with a fixed velocity V; and nesting on the
lower branch of the HS bistability loop, provided k, = k,
[11]. Using the terminology of Ref. [14] we work in the
regime of the triggered optical parametric oscillator, when
the instability of the HS does not grow out of noise, but can
be induced by a seed pulse. The CPS in Fig. 2(b) moves
with the velocity 2 X 10% m/s. It traverses across the
typical pump spot of 100 um in 50 ps or 200 of adimen-
sional time units.
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FIG. 2 (color online). (a) Bistability loop of the homogeneous
solution (HS). The dashed line corresponds to the unstable HS.
The dotted line marks the maximum intensity of the 1D CPSs
localized along x, as shown in (b). (b) Soliton stripe moving in
the x direction with velocity V = 0.56. Parameters: £ = 0.139,
A= —025k, =12, yp» = Yex = 0.1.

To find stable 2D CPSs we proceed by taking 1D CPS as
in Ref. [11] and extend it to infinity along the y axis; see
Fig. 2(b). Then we bind the soliton stripe by multiplying it
with a broad but finite in y tophat function. As a result the
stripe edges start moving with velocity V, along y forming
the moving fronts, Fig. 3(a). V; # 0 does not result in the
motion of the soliton center of mass (since two edges move
in the opposite directions), while V # 0 does. The front in
Fig. 3(a) is analogous to the fronts connecting the upper
and lower branches of the bistable HS [12]. For the these
fronts there exists the well-known Maxwell point (MP),
i.e., a special value of the pump, E » = Emp, such that the
front does not move [12]. For E,, > Eyp the upper state is
invading the lower one, and it is vice versa for £, < Eyp;
see Fig. 3. Our fronts, however, connect the 1D soliton to
the lower branch of the HS; therefore, the Maxwell point is
shifted away from that for HSs, Eyp; # Eyp. Stable multi-

.- MP1
002 2 | . | . | . |
0.136 0.137 0.138 0.139 0.14 0.141

Ey

FIG. 3 (color online). Moving fronts connecting 1D single-
hump (a) and double-hump (b) CPSs and HS background.
(c) Velocities V of the single-hump (solid line) and double-
hump (dashed line) fronts. V, = 0 at the Maxwell points MP1
and MP2. Parameters as in Fig. 2.
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hump 1D solitons also exist [16] and can be connected by a
front. The Maxwell point in this case is again different; see
Figs. 3(b) and 3(c).

We have also performed a similar set of simulations
designed to match practical experiments. In order to
achieve this we have added the term E,(x, y, t)e'kor i@
representing a pulse, seeding a localized excitation to the
equation for E. Using an elliptically shaped Gaussian beam
elongated along the y axis and having 1 ps duration, we
have observed that the 1D solitons in x are easily excited
and their edges (along the y direction) are either converg-
ing, so that the beam is shrinking (E, < Eyp,), or diverg-
ing (E, > Eyp;), so that the beam is expanding; see
Figs. 4(a) and 4(b). Remarkably, in a narrow window of
the pump amplitudes on the left from the Maxwell point
the shrinking in the y direction is suppressed, so that the
emerging structures remain stably localized along both
spatial coordinates; see Fig. 4(c). Performing tedious nu-
merical simulation of Eq. (1) over the time spans exceeding
10000 adimensional units, see Fig. 4(d), we have found
that the 2D CPSs with one and two humps represent stable
attractors for a generic class of initial conditions within a
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FIG. 4 (color online). (a) Shrinking of the initially localized
excitation observed for £, = 0.136. (b) Spreading of the initial
excitation observed for £, = 0.141. (c) Formation of a stable 2D
CPS for E, = 0.1378. (d) Long-term dynamics showing the
dynamical robustness and confirming the attractor properties
of 2D CPSs, E,, = 0.1378. Other parameters as in Fig. 2.

finite interval of pump intensities; see Figs. 5(a), 6(a), and
6(b). Thus we can claim existence of the 2D CPSs under
the conditions when the polariton effective masses along
the orthogonal directions have the opposite signs. The seed
momenta applied in our simulation were ky = 0 (seed
orthogonal to the cavity plane) and ky, = k, (seed is col-
linear with the pump). Both choices have led to the soliton
excitation. Note, that Amo et al. [14] qualitatively inter-
preted the observed quasinondispersive propagation of the
polariton wave packets in terms of straightening of the
Bogolyubov dispersion [17], which is not equivalent to
the soliton concept.

While the Maxwell point argument has been useful in
finding 2D CPSs, it relates to a specific value of E, and
cannot explain why solitons do exist within a finite interval
of E,. Thus other physical mechanisms are likely to be
involved in the soliton formation. To start uncovering them
it is instructive to look at the CPS momentum space
profiles; see Figs. 6(d) and 6(e). The spectrum of the
single-hump CPS exhibits a maximum around the pump
momentum and has two symmetric sidelobes, which are
getting more pronounced in the double-hump case. This
indicates that parametric four-wave mixing of polaritons
[7,14,18,19] (two pump polaritons decaying into the signal
and idler polaritons) plays a role in the soliton physics.

It is well known that the parametric process results in the
transformation of an unstable HS into a traveling roll
pattern with one of the roll sidebands picking close to the
zero momentum [ 19]. It is well appreciated in the nonlinear
optics that the nonlinearity resulting from the parametric
wave mixing is not simply proportional to the polariton
density but involves phases of the participating waves. The
phase dependence of the nonlinearity becomes obvious
after E and V¥ in Eqgs. (1) are represented as superpositions
of the spectrally narrow pump, signal, and idler compo-
nents [19]. For example, for ¥ we have

= l)bpeikpriﬁpt + l/jxeik\.xfié\.ﬁri(b + l//ieik,‘xfiﬁ,-tfiqb' (2)

Here ¢, , ; are the slowly varying complex amplitudes and
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FIG. 5 (color online). (a) Maxima of |E| for different soliton
solutions versus the pump E,. CPS1 and CPS2 correspond to
single- and double-hump solitons as in Figs. 6(a) and 6(b),
respectively. The dashed line marks a branch of the parametric
CPSs; see Fig. 6(c). Parameters: A = —0.25, k, = 1.2. (b) y
profiles of the pump, signal, and idler components of the
photonic component of the parametric CPS from Fig. 6(c).
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FIG. 6 (color online). Profiles of the excitonic components of
the stable bright polariton solitons in the coordinate (a)—(c) and
momentum (d)—(f) space. Panels (a),(b),(d),(e) correspond to the
single- and double-hump 2D solitons computed for E, =
0.1378. Panels (c),(f) correspond to the parametric soliton lo-
calized only along y coordinate computed for E, = 0.1375.
Parameters: A = —0.25, k, = 1.2.

the indices s, i correspond to the signal and idler, respec-
tively. ¢ is the relative phase shift signifying correlation
between the signal and idler fields.

Our hypothesis is that parametric nonlinearity can ac-
tually support stable localization of polaritons along the
direction corresponding to the negative effective mass. The
single- and double-hump CPSs are themselves not the best
objects to test properties of the parametric nonlinearities,
because their spectra are too broad in k, to satisfy require-
ments needed for validity of the ansatz (2). In order to get
narrow-band signal, idler, and pump fields, we have taken
the seed pulse with ky = 0, which is infinitely extended
along the x direction and localized in y. This pulse has
evolved with time into a periodic in x pattern, which
maintains its localization in y over the arbitrary long
time intervals; see Fig. 6(c). A single-hump 2D soliton is
well approximated by a single peak of this pattern. These
results imply that the parametric process indeed promotes
localization of polaritons along the direction correspond-
ing to the negative effective mass. The momentum space
spectrum of the periodic pattern has the expected narrow
sidelobes corresponding to the signal and idler beams; see
Figs. 1 and 6(f). The y dependencies of the pump (4,),
signal (A;), and idler (A;) components of the photonic
component of the periodic pattern are shown in Fig. 5(b),
where it is obvious that we are dealing here with the three
component parametric 1D CPS localized along the y co-
ordinate. Note that cavity solitons due to parametric pro-
cesses have been previously discussed in the context of
quadratically nonlinear materials (Ref. [20]), where an

important role of the phase ¢ [see Eq. (2)] has been studied
in detail.

In conclusion, we have gathered comprehensive numeri-
cal evidence unambiguously supporting the existence and
practical stability of 2D solitary structures in the polari-
tonic microcavities; see Figs. 6(a) and 6(b). These solitons
are sustained due to the interplay of the two distinct non-
linear mechanisms responsible for localization along the
orthogonal directions. Localization along the direction col-
linear with the pump momentum happens because the
dispersion induced by the negative polariton mass is bal-
anced by the repulsive polariton-polariton interaction.
Localization along the orthogonal direction, where the
effective mass is positive, occurs due to parametric non-
linearity. Each of these processes taken separately supports
two distinct families of 1D solitons, cf. Figs. 2(b) and 6(c).
Apart from the fundamental significance of our findings,
they hold a promise of practical applications. This arises
from the fast and strong nonlinear response of polaritons
[71, beating in these aspects the semiconductor microcav-
ities in the weak coupling regime, where very attractive
applications of 2D solitons [13] have suffered from the
slow excitation times and high power demands.
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