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We present an analytical expression for the electromagnetic field at the surface radiated by a hole in a
metal film. This expression is valid for any metal, from the optical range to longer wavelengths, and for
distances to the hole larger than a few tens of nanometers. The field pattern presents a rich behavior,
showing three regions (a complex short distance, an intermediate range dominated by surface plasmon
polaritons, and a long-distance one dominated by Norton waves). The crossover distances between these
regimes depend strongly on both the wavelength and the angle with respect to the incident field.
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Introduction.—The transmission of light through small
apertures in a metal has been a subject of research for
centuries [1]. Traditionally the interest has centered on
the transmitted intensity and far-field radiation pattern.
Recently, the discovery of optical transmission resonances
in hole arrays [2,3] and the appearance of the field of
plasmonics [4,5] has attracted attention to the properties
of the electromagnetic (EM) field at the metal surface.
However, knowing the spatial field distribution at the metal
surface of the radiation transmitted through the hole still
requires either the notoriously difficult numerical compu-
tation of Sommerfeld integrals, or the use of electromag-
netic numeric solvers, which can only deal with a small
volume around the hole [6,7].

Here we present an analytic expression for the field at
the surface radiated by a hole in a metal film. This ex-
pression is valid for any metal and, despite originating
from a long-distance asymptotic expansion, it turns out
to be an excellent approximation for distances to the hole
as small as A/10 (A being the wavelength).

The field at the surface and the Green’s dyadic.—We
consider a hole in an optically thick metal film, back-
illuminated by a monochromatic plane wave with an elec-
tric field E;,., see Fig. 1. The top metal interface is set at
z = 0. The dielectric at z > 0 is assumed to be vacuum and
the metal is characterized by a frequency-dependent di-
electric constant € (which here we take from [8]).
Throughout this work, all distances expressed in lower
case letters are dimensionless, such that x = k X, y =
k,Y, etc., where k, =2m/A and X, Y are usual
coordinates.

The field emerging from the hole E(r, z) [where r =
(x, y) are coordinates along the surface] can be expressed in
terms of the electric field in the hole at a distance of one
skin depth 8 = A/[27rIm(/€)] from the opening, see the
supplementary material (SM) [9].
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where E,,(r') = E(r/, z = —§), S is the cross section of the
aperture, and C = 1v/e — 1/k,,. The quantity G(r) is the
3 X 3 Green’s dyadic; each of its vector columns provide
the electric field at point (r, z = 0") created by a dipole
placed at the origin, and aligned with one of the coordinate
axes. The expressions for G(r) in terms of integrals over
diffraction modes are well known (see [10] for a pedagog-
ical derivation) and can be found in the SM. Physically, the
integrals show that the field at the surface arises from the
interference of all possible diffraction modes (both radia-
tive and evanescent), which are excited by the opening with
an amplitude that depends both on their density of states at
the surface and their coupling with the field at the aperture.

In general, the field inside the hole must be computed
self-consistently. However, for subwavelength holes the
transmission process is governed by the fundamental
mode inside the hole, and the pattern of the field can be
readily obtained from a convolution of this mode and G(r)
through Eq. (1).

Here we concentrate on computing G(r), which directly
gives the field radiated by a pinhole through its effective
electric dipole p as

FIG. 1 (color online). The geometry of the studied system.
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E(rz=0")=Grp. p=C [ dr'E,(r)).  (2)

s
Because of the symmetry of the problem, it is convenient to
compute both E(r, z = 0%) and G(r) in cylindrical coor-
dinates (r, 0) (see Fig. 1). In this way, several elements of
G are zero and the rest depend only on r. Moreover, as the
field inside a small aperture has predominantly in-plane
components, p, =~ 0 and only a 2 X 3 subset of G(r) is
needed. Assuming, without loss of generality, that the
effective dipole p points along the x axis, the field at r =
(rcosh, rsind) is E(r,z = 07) = G(r) - (cosb, sind)” p,
with

. N Grr(r) 0
G(r) = G(r) = ( 0 Gaa(”)) 3)
G (r) 0

Asymptotic for the Green’s dyadic.—The integrals defin-
ing G(r) do not have a closed analytical form and the
difficulty of their numerical computation is legendary,
due to the simultaneous presence of poles, branch cuts,
and a strongly oscillatory integrand. To obtain an approxi-
mation to the Green’s dyadic G%(r), we have applied the
steepest-descent method, modified in order to take into
account the presence of both poles and branch points close
to the path of integration [11]. This method is, in principle,
valid for r >> 1 but, as we will show later, in this particular
problem it provides accurate results even for r = 0.5 (i.e.,
R = 0.1A).

The details of the calculation are presented in the SM;
here we give the final result:

1
mem’/‘" (4)

G =g, =4

where scalar term f(r) reflects the 2D geometry of the
waves in the plane. The dyadic g(r) can be decomposed as

2(r) = 8570 + V(r) + 5g(r). )

In this expression, g5PF(r) is the contribution due to surface
plasmon polaritons (SPP), which mathematically origi-
nates from the SPP pole:

R N A 9z [ A 14
SPP(r) = €' TI(r), II(r) =2 L (P +-P )
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P
(6)
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where é = 1/Ve+1, g, =+/1 — &% and ¢, = — & are
the in-plane and normal components of the SPP momen-
tum, respectively, in units of k,,. As it is well known, for a

lossy metal Img, # O and the SPP fields decay exponen-
tially with distance to the source. The SPP field is mainly
perpendicular to the plane with a small in-plane component
which is purely longitudinal in the P, contribution (G4p =
0), while the P, term presents a transversal component.
However, along any direction (different from 6 = 7/2) the
in-plane field tends to be radially polarized, as
ESPP/ESPP ~ tan(6)/r.

The term gNW(r) is the contribution arising from the
kink in the integrand related to the branch point at the light
cone (see SM).

ir

/6 0
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r /€ 0

®)

Its label NW reflects that it originates from the same part
of the angular spectrum as the Norton wave found in the
radiation of radio waves by a vertical dipole in a lossy
dielectric [12]. As in that problem, the NW electric field
amplitude decays algebraically with distance as
f(r)g"W(r)~r2 and points mainly along the
z direction. However, while for the vertical dipole the in-
plane component of the field is radially polarized and
isotropic, in the case of radiation by a pinhole E}™ /ENW ~
£2 tan(6).

The close presence of the pole and the branch point
modifies their respective density of EM states. As a result

of this “interaction” there is a correction term 5g(r), given
by

5\( ) e im/4 ir[ﬂ( ) T Gz p ]
r)=——e r)— —
8 N S,r \Jq, 0

+ I:% erfe(—4/16,r) — 1]eiqﬂ’ﬁ(r), 9)

where erfe(x) = 2/ /@) [ e "dt is the complementary

error function, and 8, = g, — 1. The expression for g(r)
comes from a series expansion in inverse powers of r (see
SM) where we have retained enough terms to represent
both the leading long-distance and large € dependencies.
Actually, by performing the limit ¢ — 0 in Egs. (2)—(9), we
recover the exact (valid for all distances) field at the surface
radiated by a hole in a perfect electrical conductor case
(PEC, el =o0): EPEC(r) = e (ir ! — r72)/(2m) X
Jsdr'E,;,(r'). Evaluation of the previous expressions for
different metals and wavelengths show that, at long dis-

tances, 5‘\g(r) decays faster than both g5°P(r) and g™V (r).

To justify the validity of the previous expressions we
have compared, for the case of a gold surface, Gzr(r), and
the asymptotic expression G¢.(r). Similar results to those
shown here have been obtained for the other nonzero
components of the Green’s dyadic, and other metals,
from the optical regime to longer wavelengths. Figure 2
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FIG. 2 (color online). The comparison between the exact
numeric computation and the analytic approximation for
G.,(r), in the case of a gold surface at A = 540 nm. The inset
shows the relative error A as a function of A, for several
distances to the hole.

renders the results for A = 540 nm (e = —5.26 + 2.06i),
which has been chosen to illustrate the validity of our result
even in the unfavorable case of a small |€|. As can be seen,
the asymptotic expression is an excellent approximation to
the exact result, both in amplitude and phase, even at
distances smaller than the wavelength. This is further
illustrated in the inset to Fig. 2, which shows the depen-
dence, with both wavelength and distance to the source, of
the relative error A = |(G4. — G,,)/G,,|. The relative er-
ror is larger for short distances and short wavelengths. Still,
even at A = 540 nm the maximum relative error is less
than 10% for R/A ~ 0.1 and decays rapidly to 1% already
at the telecom wavelength A =~ 1500 nm.

The field at the surface radiated by a pinhole.—
Equations (2)—(9) represent the main result of this Letter.
In what follows we use them to get additional insight into
the fields radiated by a pinhole. According to Eq. (3), the
field along x has radial and z components, while it has only
transversal 6§ component along the y direction. Figure 3
shows the dependence of the in-plane components of the
electric field with distance to the pinhole along the x axis
[panel (a)] and y axis [panel(b)], for the representative case
of a gold surface at A = 800 nm. These panels show that
the field is strongly suppressed along the y direction and
that, as in the 2D case [13—15], the field is well represented
by a SPP already at 2-3 wavelengths away from the
pinhole.

At shorter distances, the field pattern is more complex
and, as was done for the 2D case [16], it is useful to define a
“wave” substructing the SPP contribution from the total
field, as EV = E — ESP? (denoted as CW, from its usual
names ‘‘creeping wave’ or ‘“‘quasicylindrical wave’’).

Notice, however, that, in the intermediate region
(0.1A < R <2-3)), the CW contribution is larger relative
to the SPP one along the y direction than along the
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FIG. 3 (color online). The field along the gold surface radiated
from a pinhole at A = 800 nm. Panel (a) shows Re[E.(x,y =
0,z = 0)], together with the SPP and CW contributions, while
panel (b) does the same for Re[E,(x = 0, y, z = 0)]. Panels (c)
and (d) render the spatial distribution of Re[E,(x, y, z = 0)] and
Re[Ey(x, y, z = 0)], respectively. All fields are normalized to
|[E(x=m,y=02z=0")|.

Re(E,)

x direction. This is so because the SPP originates from
p-polarized waves (which, as discussed before, are mainly
longitudinal in the plane), while both p and s waves
contribute to the total field (and thus to the CW). This
angular dependence of the relative importance of SPPs and
CWs is further illustrated in the insets to panels Figs. 3(a)
and 3(b), where the amplitude of the total field at the
surface is plotted along the two coordinate axes.

At even larger distances the exponentially decaying SPP
is overcome by the algebraically decaying part in the total
field corresponding to the NW contribution (in this dis-

tance regime a\g < W), This transition has been recently
studied in the simplified 2D geometry (radiation by a slit)
[17-19], where it was found that the crossover distance
depends upon the material and wavelength but, as a rule of
thumb, it is located at 6-9 SPP propagation lengths, for
most of the metals in the visible and infrared spectral
regions [19].
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nates, and a long-distance region, where the SPP has died
away and a different type of wave (the Norton wave)
dominates. All crossover distances between these regions
are strongly angular dependent. We expect our results to be
of fundamental value in the research on problems such as
extraordinary optical transmission, launching of SPPs by
apertures, the shaping of EM fields by nanopatterning of
metal surfaces, and the radiation of localized sources, such
as molecules and quantum dots, placed on a metal surface.

The authors acknowledge support from the Spanish
Ministry of Science and Innovation under Grants
No. MAT2009-06609-C02 and No. CSD2007-046-
NanoLight.es.
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FIG. 4 (color online). The electric field amplitude |E(x, y, z =
0)|, at the Au surface for A = 540 nm, along with the SPP
and Norton wave contributions. The continue curves correspond
to the dependencies along Ox, while the dashed ones are
along Oy. The inset shows the spatial distribution for the
logo[|E(x, y, z = 0)]]. The crossover distance between SPP
and NW is shown by the white discontinuous curve. All fields
are normalized to |[E(x = 7,y = 0,z = 07)|.

In the case of radiation by a pinhole we find that the
crossover distance, from a SPP-dominated to a NW-
dominated in-plane field, depends strongly on 6. This
occurs because the SPP and the NW present the same
dependence of E,/E, with 6 [~ tan(6)], but a different
dependence along r. This is illustrated in Fig. 4 which, for a
gold surface and A = 540 nm, shows the full field, and the
SPP and NW contributions along both the x axis (continu-
ous lines) and y axis (broken lines). Notice that the good

agreement with the full field confirms that 5g(r) is already
negligible in this range of distances. In general, the cross-
over distance is maximum along the x direction and mini-
mum along the y direction (23A and 7, respectively, for
the represented case). The crossover distances strongly
depend on wavelength and metal; however, the calcula-
tions show that the crossover distance along the x direction
is approximately 3 times larger than along the y direction
in the optical regime.

To conclude, in this Letter we have derived a simple
analytical expression for the field at the surface radiated by
a pinhole in a metal film. The comparison with the exact
numerical results shows that this analytical expression is
valid for all metals, from the optical regime to longer
wavelengths and, despite its asymptotic character, even at
distances as small as A/10. Three spatial regions have been
identified: a short-distance region where the field differs
from a SPP, an intermediate region where the SPP domi-
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