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Attosecond streaking, as a measurement technique, was originally conceived as a means to characterize

attosecond light pulses, which is a good approximation if the relevant transition matrix elements are

approximately constant within the bandwidth of the light pulse. Our analysis of attosecond streaking

measurements on systems with a complex response to the photoionizing pulse reveals the relation between

the momentum-space wave function of the outgoing electron and the result of conventional retrieval

algorithms. This finding enables the measurement of the quantum phase associated with bound-continuum

transitions.
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The absorption of an energetic photon by an atom or
molecule starts a sequence of events which may result in
the emission of one or several electrons. Recent advances
in attosecond science allow time-resolved measurements
of such dynamics [1–3]. In general, the resulting electron
wave packets carry valuable information about the pro-
cesses that produced them. Until recently, the full charac-
terization of an electron wave packet was impossible—
while the spectrum of a wave packet can easily be mea-
sured, the phase information was inaccessible. In this
Letter, we show rigorously that attosecond streaking [4,5]
is an appropriate tool to measure the energy dependence
of the phase associated with a particular bound-free
transition.

Attosecond streaking consists in recording a set of pho-
toelectron spectra over a range of delays between an io-
nizing extreme ultraviolet (XUV) pulse and an optical
waveform, the intensity of which should be too weak to
affect bound electrons, but strong enough to significantly
accelerate or decelerate free electrons. This interaction
with free electrons is referred to as streaking, and the
role of the streaking waveform is usually played by a
few-cycle near-infrared laser pulse with a stabilized
carrier-envelope phase. A set of such laser-dressed electron
spectra comprises a spectrogram. For a comprehensive
review of attosecond streaking measurements and recon-
struction techniques, we refer the reader to the original
papers [4–9] and focus on the most important concepts. In
the following, the photoionizing radiation is referred to as
an ‘‘XUV pulse’’, although this radiation may consist of
several pulses, and it does not have to be strictly in the
XUV spectral range. Let us consider the interaction of a
linearly-polarized XUV pulse with a quantum-mechanical
system, which is initially found in a stationary bound state

j�0i of its Hamiltonian Ĥ0. The XUV pulse launches a
single-electron wave packet j�ðtÞi, the propagation of
which in the ionic potential is conveniently described in

a basis formed by continuum eigenstates of Ĥ0. In the

following, jpi will represent such an eigenstate, so that
jhpj�ðtÞij2 is the probability density of detecting a photo-
electron with an asymptotic momentum p. In this basis, the

motion of the photoelectron is determined by hpj�ðtÞi ¼
~�ðpÞe�iðp2=2Þt (atomic units are used throughout this
Letter). The probability amplitudes ~�ðpÞ fully describe
the properties of the electron wave packet. For each direc-
tion of observation, we define a time-domain wave packet
as

�ðtÞ ¼ i

�

Z 1

0
~�ð ffiffiffiffiffiffi

2�
p Þe�ið���0Þtd�

¼ i

�

Z 1

0
hpj�ðtÞieiðp2

0
=2Þtpdp; (1)

where � ¼ p2=2 stands for the energy of the electron
infinitely far from the ion, and �0 ¼ p2

0=2 is a central

energy of the wave packet. As we show below, �ðtÞ is the
quantity that is recovered by analyzing the attosecond
streaking spectrogram. This provides much needed rigor
to what has been vaguely referred to as the reconstructed
‘‘wave packet.’’
If an electron is freed as a result of single-photon ion-

ization, the properties of the electron wave packet derive
from the spectral components of the incoming light pulse
multiplied by the respective complex-valued transition
matrix element DðpÞ [10]. Let us consider an XUV pulse
with the electric field EXUVðtÞ ¼ Re½EXUVðtÞe�i�t�, where
� is the central frequency, and EXUVðtÞ is the complex
envelope of the pulse. First-order perturbation theory com-
bined with the dipole and rotating-wave approximations
yields

~�ðpÞ ¼ � i

2
~EXUV

�
p2

2
� p2

0

2

�
DðpÞ; (2)

where

~E XUVð!Þ ¼
Z 1

�1
EXUVðtÞei!tdt (3)
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is the Fourier transform of the complex XUVenvelope. The
central momentum p0 is related to the central frequency�
of the XUV pulse and the ionization potentialW by energy
conservation: p2

0=2 ¼ �0 ¼ ��W.

In the absence of the streaking field, an explicit expres-
sion for the photoelectron spectrum S0ðpÞ ¼ jhpj�ðtÞij2 ¼
j~�ðpÞj2 is

S0ðpÞ ¼
��������
1

2

Z 1

�1
dtEXUVðtÞDðpÞeiððp2=2Þ�ðp2

0
=2ÞÞt

��������
2

: (4)

As it was originally shown in [5], the presence of a
streaking laser pulse ELðtÞ ¼ �@AL=@t delayed by �
with respect to the XUV pulse is accounted for by the
following generalization of Eq. (4):

Sðp; �Þ ¼
��������
1

2

Z 1

�1
dtEXUVðt

þ �ÞG0ðp; tÞeiððp2=2Þ�ðp2
0
=2Þt

��������
2

: (5)

Here, G0ðp; tÞ ¼ DðpþALðtÞÞei�ðp;tÞ with �ðp; tÞ being
the Volkov phase:

�ðp; tÞ ¼ �
Z 1

t

�
pALðt0Þ þ 1

2
A2
Lðt0Þ

�
dt0: (6)

In the original derivation [5], DðpÞ ¼ hpjzj�0i was
evaluated with hpj as a plane-wave state, which is equiva-
lent to the so-called strong-field approximation. This ap-
proximation was improved [11] by taking hpj as a

continuum eigenstate of Ĥ0, which is known as the
Coulomb-Volkov approximation. We use a variant of this
approximation [12].

Starting from the work [7,13] of Y. Mairesse and
F. Quéré, the analysis of attosecond spectrograms is based
on the striking similarity between Eq. (5) and the definition
of a spectrogram in the context of frequency-resolved
optical gating (FROG):

SFROGð!; �Þ ¼
��������
1

2

Z 1

�1
dtPðtþ �ÞGðtÞei!t

��������
2

; (7)

where PðtÞ and GðtÞ are interpreted as a pulse [14] and a
gate, respectively. Powerful algorithms were developed for
retrieving both the pulse and the gate from a FROG spec-
trogram [15,16]. The application of these algorithms to the
analysis of streaking spectrograms is hindered by the fact
that G0ðp; tÞ, unlike GðtÞ, depends on p. Fortunately, this
dependence is often weak, especially if the matrix element
DðpÞ is almost constant within the bandwidth of the XUV
pulse. By replacing G0ðp; tÞ with

G1ðtÞ ¼ Dðp0 þALðtÞÞei�ðp0;tÞ; (8)

which is known as the central momentum approximation,
the streaking spectrogram is considered as a FROG spec-
trogram with ! ¼ p2=2� p2

0=2. Within this framework,

the pulse retrieved by a FROG algorithm was expected

[8,17] to be

P1ðtÞ ¼ EXUVðtÞ: (9)

In other words, FROG was thought to retrieve the complex
envelope of the XUV pulse. We find that this is generally
not correct. Given a spectrogram defined by Eq. (5), FROG
will rather retrieve a pulse

P2ðtÞ ¼ �ðtÞ (10)

and a gate given by Eq. (15) below, which is approximately
represented by

G2ðtÞ � ei�ðp0;tÞ: (11)

Before we provide the mathematical background for this
fact, let us illustrate it by an example where the central
momentum approximation (8) spectacularly breaks down.
We take an artificial matrix element that roughly models
the 3s Cooper minimum in argon [18]:

DðpÞ ¼ p2=2� p2
0=2 (12)

with p0 ¼ 1:77 at:u: (choosing the central energy to co-
incide with the Cooper minimum at 42.5 eV). Although
DðpÞ is a real quantity in this example, it can be considered
having a piecewise constant phase with a discontinuity of
� at p ¼ p0. The XUVand laser pulses are assumed to be
polarized along the direction of photoelectron detection.
Both pulses are bandwidth limited with Gaussian enve-
lopes: EXUVðtÞ / exp½�0:036t2� (shown in Fig. 2) and
ALðtÞ ¼ 0:1 exp½�3:24� 10�5t2� cosð0:0608tÞ. The full
width at half maximum (FWHM) of the XUV intensity is
equal to 150 as. The FWHM of the laser pulse is 5 fs; its
central wavelength is 750 nm.
Figure 1(a) shows a spectrogram calculated using

Eq. (5). The FROG reconstruction [8] yields a very similar
spectrogram, Fig. 1(b). On the other hand, the conventional
central momentum approximation, defined by Eqs. (7)–(9),
yields a spectrogram, shown in Fig. 1(c), which has very
little resemblance to the original spectrogram. The ap-
proximation breaks down in this example because
Dðp0Þ ¼ 0. However, the pulse and gate pair given by
Eqs. (10) and (11) yield a spectrogram that is very close
to the original one, Fig. 1(d).
In Fig. 2, we compare the XUV envelope EXUVðtÞ, the

time-domain wave packet �ðtÞ, and the pulse PðtÞ retrieved
by FROG from the spectrogram shown in Fig. 1(a). The
retrieved pulse nearly coincides with the wave packet �ðtÞ.
In the momentum space, we see that the wave packet and
the retrieved pulse only differ in a narrow spectral region
near the phase discontinuity, as shown in Fig. 3.
To gain insight as to why the time-domain wave packet

(1) plays the role of the pulse, we use Eqs. (2) and (3) to
express EXUVðtþ �Þ in (5) via ~�ðpÞ and then expand
½DðpÞ��1 in a Taylor series, which eventually allows us
to rewrite the master equation (5) in a form where �ðtÞ
plays the role of the pulse. In the case when the XUV and
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streaking pulses are polarized in the direction where photo-
electrons are detected, Sðp; �Þ can be rewritten, without
any approximations, as

Sðp; �Þ ¼
��������
1

2

Z 1

�1
dt�ðtþ �Þ X

1

n¼0

an
@ngðp; tÞ

@tn

��������
2

; (13)

where an ¼ ð�iÞn
n!

@n

@!n
1

Dð
ffiffiffiffiffiffiffiffiffiffiffiffi
2!þp2

0

p
Þ j!¼0 and

gðp; tÞ ¼ Dðpþ ALðtÞÞei�ðp;tÞþiððp2=2Þ�ðp2
0=2ÞÞt: (14)

Consequently, the FROG gate associated with the time-
domain wave packet is given by

G2ðtÞ ¼
�X1
n¼0

an
@ngðp; tÞ

@tn

���������p¼p0

: (15)

Applying the central momentum approximation to

Eq. (15), rather than Eq. (5), yields a spectrogram that is
closer to the exact one. To show this analytically, we
neglect all derivatives of ALðtÞ in the expression for
@ngðp; tÞ=@tn, which is justified if the exponential func-
tion in Eq. (14) oscillates with a period that is much shorter
than the optical cycle of the streaking field. Once this
approximation is made, we recognize that the sum over n
in Eq. (13) becomes the Taylor expansion of ½Dðpþ
ALðtÞÞ��1, which simplifies Eq. (13) to

Sðp; �Þ �
��������
1

2

Z 1

�1
dt�ðtþ �Þei�ðp;tÞeiððp2=2Þ�ðp2

0
=2ÞÞt

��������
2

:

(16)

Thus, G2ðtÞ � expfi�ðp0; tÞg. Importantly, the central mo-
mentum approximation applied this way does not affect the
transition matrix element DðpÞ, while the conventional
expression for the FROG gate (8) approximates Dðpþ
ALðtÞÞwithDðp0 þ ALðtÞÞ. In the example presented above
this was a very poor approximation.
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FIG. 3 (color online). The phase of the momentum-space wave
packet arg½~�ðpÞ� (solid line) in comparison with the phase of the

retrieved wave packet arg½ ~Pðp2

2 � p2
0

2 Þ� (diamonds).

FIG. 1 (color online). (a) A streaking spectrogram calculated with the aid of Eq. (5) using a model transition matrix element (12).
(b) The spectrogram reconstructed using a FROG algorithm. (c) The spectrogram calculated using the FROG ansatz (7) with the pulse
P1ðtÞ ¼ EXUVðtÞ and the gate G1ðtÞ. (d) The FROG spectrogram evaluated with the pulse being the time-domain wave packet �ðtÞ and
the gate G2ðtÞ ¼ expfi�ðp0; tÞg.
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FIG. 2 (color online). The envelope of the XUV pulse EXUVðtÞ
(dash-dotted line), the time-domain wave packet �ðtÞ defined by
Eq. (1) (solid line), and the pulse PðtÞ retrieved by FROG from
the spectrogram shown in Fig. 1(a) (diamonds). In this example,
the real part of the wave packet is equal to zero, so we compare
the imaginary parts of �ðtÞ and PðtÞ.
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As a remark, we were able to find cases where Eq. (16)
was a seemingly worse approximation to the true spectro-
gram (5) than the conventional central momentum approxi-
mation [19]. Nevertheless, FROG retrieved the time-
domain wave packet. This confirms that the central mo-
mentum approximation is more generally applicable if the
spectrogram is expressed via �ðtÞ according to Eq. (13).

In conclusion, we have established that the time-domain
wave packet �ðtÞ defined by Eq. (1) determines the output
of attosecond streaking measurements processed with
conventional retrieval algorithms, such as ‘‘frequency-
resolved optical gating for complete reconstruction of atto-
second bursts’’ (FROG CRAB) [13]. The analysis pre-
sented in this Letter was focused on direct single-photon
ionization with a complex transition matrix element, using
a Cooper minimum as an example. However, it is known
that Eq. (5) formally describes more sophisticated streak-
ing measurements, such as those of the Fano resonances
and autoionization decay [20,21]. Therefore, our analysis
is directly applicable to these situations as well, Eq. (1)
being a fundamental relation between the momentum-
space wave function of a photoelectron and the pulse
retrieved from a streaking spectrogram.

Having established this relation, we claim that the quan-
tum phase associated with bound-free transitions can be
measured (up to a constant phase) by means of attosecond
streaking. According to Eq. (2), this is possible if the
spectral phase of an attosecond pulse is known. An XUV
pulse can be fully characterized in a streaking measure-
ment performed on an atom where the accurate matrix
elements are known from a reliable model or their phases
are known to be negligible. For example, helium can be
used for such a calibration. Then another streaking mea-
surement on the system under scrutiny will provide all the
necessary information to retrieve the unknown phases of
quantum transitions and thus completely characterize pho-
toionization dynamics. Such a measurement would be a
test and, possibly, a challenge for many-electron theories of
photoionization, especially if the ionization involves a
resonance state or a Cooper minimum.
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