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We obtained an unprecedentedly large number of s-wave neutron widths through R-matrix analysis of

neutron cross-section measurements on enriched Pt samples. Careful analysis of these data rejects the

validity of the Porter-Thomas distribution with a statistical significance of at least 99.997%.
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Neutron resonance parameters remain some of the most
important information for testing random matrix theory
(RMT) [1], even more than 50 years after such data served
as the original impetus for its creation. Today, RMT per-
vades the physics of virtually all complex systems and, in
the nuclear physics arena, is most often invoked in studies
of quantum chaos [2]. Given the conserved symmetries
involved, RMT for the Gaussian orthogonal ensemble of
matrices is expected to correctly describe fluctuation prop-
erties of nuclear levels at relatively high excitation such as
near the neutron threshold. It implicitly assumes that re-
duced neutron widths �0

�n of s-wave resonances � follow a

Porter-Thomas distribution (PTD) [3], which had been
anticipated before RMT emerged. Currently, the over-
whelming consensus is that �0

�n data agree with the PTD.
However, there are problems with both the data and analy-
sis techniques used in reportedly the best test of the PTD to
date [4] that call these results into question [5]. Measure-
ment and analysis techniques have improved considerably
since then, so it is worthwhile to perform new tests of the
PTD.

In this Letter, we show that rich �0
�n data extracted

from high resolution neutron total and capture cross sec-
tions of 192;194Pt measured at the Oak Ridge Electron
Linear Accelerator facility display a significant depar-
ture from the PTD. To our knowledge, this result repre-
sents the most stringent test of the PTD to date, and the
observed disagreement could have far-reaching con-
sequences.

Loosely stated, the PTD is based on the assumptions that
s-wave neutron scattering is a single-channel process, the
widths are statistical, and time-reversal invariance holds;
hence, an observed departure from the PTD implies that
one or more of these assumptions is violated, and so could
be very interesting.

To make reliable conclusions regarding the validity of
the PTD, it is important that the data set be as pure,
complete, and large as possible. Perennial problems with
neutron resonance data have been (i) contamination of
s-wave by p-wave resonances and/or resonances of neigh-
boring isotopes, (ii) obtaining enough resonances with
known spin J to perform statistically meaningful tests,

and (iii) missed resonances due to finite experimental
threshold.
In the present case, problem (i) was minimized because

Pt is near the peak of the s-wave and minimum of the
p-wave neutron strength functions (S0=S1 � 10), and be-
cause we made high resolution cross section measurements
on natural Pt and four samples enriched in 192Pt, 194Pt,
195Pt, and 196Pt.
Problem (ii) was addressed by combining data for two

target nuclei 192Pt and 194Pt, containing the largest number
of resonances (158 and 411, respectively), and by the fact
that all s-wave resonances have spin J ¼ 1=2 for these
even-even nuclides.
Finally, as described below, the novel approach of using

an energy-dependent threshold in the analysis helps to
solve all three problems. As a result, our 192;194Pt data are
at least as pure, complete, and large as all previous �0

�n data

which have been used for testing the PTD.
Details of the measurements can be found in Ref. [6].

The Oak Ridge Electron Linear Accelerator was operated
at a pulse rate of 525 Hz, a pulse width of 8 ns, and a power
of 7–8 kW. Capture measurements were made at a source-
to-sample distance of 40.12 mwith a pair ofC6D6 detectors
using the pulse-height-weighting technique, and were nor-
malized via the saturated 4.9-eV resonance in the
197Auðn; �Þ reaction. Total neutron cross sections were
measured on a separate flight path via transmission using
a 6Li-loaded glass scintillator at a source-to-detector dis-
tance of 79.83 m.
The R-matrix code SAMMY [7] was used to fit both our

transmission and capture data and extract resonance pa-
rameters. Resonance energies E� and neutron widths
gJ��n, where gJ is the statistical factor for resonances
with spin J and ��n, were used in the subsequent analysis
described below. For even-even targets, s-wave resonances
have gJ � g1=2 ¼ 1, and hence, gJ��n ¼ ��n.

An asymmetrical shape in the transmission data could be
used to assign ‘n ¼ 0 resonances [6], see Fig. 1. However,
there remained many weak resonances, most of which are
p wave, for which we could not unambiguously determine
the ‘n value. As shown below, the potential problem posed
by these resonances has been surmounted.
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The need to use a threshold on observables gJ��n, to
guard against possible systematic errors due to instrumen-
tal effects and p-wave contamination, was realized very
early on [3] in using such data to test theory. Use of an

En-dependent s-wave threshold of the form T0 ¼ a0E
3=2
n ,

where a0 is a constant factor, is a key improvement in our
method compared to previous analyses (in which only
energy-independent thresholds were used) for at least three
reasons. First, p-wave contamination is eliminated equally
effectively at all energies. Second, as shown in Fig. 1, our
instrumental threshold T follows very closely this same
energy dependence; thus, possible diffusiveness of the
instrumental threshold can be surmounted equally effec-
tively at all energies. Third, statistical precision of the
analysis is maximized by allowing the largest number of
s-wave resonances to be included.

The PTD is a special case (degrees of freedom � ¼ 1) of
the family of �2 distributions, the probability density func-
tion (PDF) of which is denoted hereafter as fðxj�Þ.
Because theory predicts fluctuations, but not average val-
ues, it is necessary to scale the data to their average, or
expectation, value: x ! �0

�n=E½�0
�n�, where E½�� denotes

the expectation value operator.
We began our fluctuation analysis by employing the

maximum-likelihood (ML) method, which has been used
since the earliest tests of the PTD, to estimate � and E½�0

�n�.
We used threshold T0 shown in Fig. 1 (with factor a0 given

in Table I), which was chosen to reduce p-wave contami-
nation to very low levels.
The joint PDF for statistical variables �0

�n and E� is
defined in a 2D region I given by inequalities E� < Emax

and �0
�n > T0ðE�Þ, where Emax is an upper limit of energies

E�. The expression for this PDF reads

h0ðE�;�
0
�nj�; E½�0

�n�Þ ¼ Cf

�
�0
�n

E½�0
�n�

���������
�
: (1)

The factor C, ensuring a unit norm of h0, is � and E½�0
�n�

dependent. The ML function was calculated from all n0
pairs [E

expt
�i

, �
expt
�in

], obtained from the experiment, which

fall into the region I . Specifically,

Lð�; E½�0
�n�Þ ¼

Yn0
i¼1

h0ðEexpt
�i

;�
0expt
�in

j�; E½�0
�n�Þ: (2)

A contour plot of this ML function in the form

zð�; E½�0
�n�Þ ¼ 21=2flnLmax � lnLð�; E½�0

�n�Þg1=2 (3)

is depicted in Fig. 2. Here, Lmax is the maximum of the ML
function. Results of the ML analysis are listed in Table I.
If lnL displays near its maximum a shape close to a

paraboloid, a contour for a fixed value z ¼ k will encircle
approximately the k� confidence region of the ML esti-

mates Ê½�0
�n� and �̂ (referred to hereafter as �̂expt). In this

way, we found that the difference 1� �̂expt equals approxi-

mately 2:7� for 192;194Pt and 1:4� for 196Pt. The results for
192;194Pt indicate that the PTD is excluded with high con-
fidence. The result for 196Pt is in agreement with 192;194Pt,
but with reduced statistical significance owing to the
smaller number of resonances observed for this nuclide.
For this reason, we did not include 196Pt in the subsequent
fluctuation analysis described below.
In the spirit of classical statistics, parameters � and

E½�0
�n� are not random variables. Consequently, the func-

tion z refers in ideal conditions to a distribution of esti-
mates of these parameters, not to the parameters
themselves. Further, as can be deduced from Fig. 2, the
shape of function lnLð�; E½�0

�n�Þ differs strongly from a

paraboloid, which is also the case for 192Pt. So, at this point
it is premature to draw a reliable conclusion from the
values of �̂expt for

192;194Pt.

To check the veracity of the ML results, we undertook
additional analyses. First, for a given target and a fixed
value E½�0

�n�, we drew from the distribution governed by

TABLE I. Results of ML-based fluctuation analysis of s-wave reduced neutron widths of 192;194;196Pt resonances.

Sample Emax a0 n0 �̂expt a01 �̂0 �̂1 R S
(keV) (eV�ð1=2Þ) (eV�ð1=2Þ) (meV) (meV)

192Pt 4.98 7:00� 10�8 153 0:57þ0:16
�0:15 � � � 5:91� 0:71 ð2:68� 0:47Þ � 10�6a 26:1� 4:5 0.9970

194Pt 15.93 2:25� 10�7 161 0:47þ0:19
�0:18 9:4� 10�9 14:9� 1:5 ð8:84� 1:09Þ � 10�6 25:4� 3:1 0.9975

196Pt 15.99 3:19� 10�7 68 0:60þ0:28
�0:26 9:4� 10�9 39:7� 6:4 ð14:8� 1:6Þ � 10�6 � � � � � �

aBecause of a high instrumental threshold, �̂1 was deduced assuming that 192;194;196Pt share a common true value of �0=�1.
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FIG. 1. Energy-reduced values of observables gJ��n for indi-
vidual resonances of 194Pt. Values represented by full-circle
points belong to resonances to which we assigned ‘n ¼ 0. For
the meaning of thresholds T0, T01, and T, see the text.
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the PDF, h0ðE�;�
0
�nj� ¼ 1; E½�0

�n�Þ, a random sample,

consisting of n0 pairs [E�, �
0
�n]. Then, with the aid of the

ML analysis, we obtained an estimate �̂ for this sample.
From a large number of such samples, we constructed the
empirical cumulative distribution function (CDF) of esti-
mates �̂ and determined a probability p� ¼ Pð�̂ >

�̂exptjE½�0
�n�Þ that a simulated value �̂ is higher than the

corresponding experimental value �̂expt listed in Table I.

Given the value of E½�0
�n�, the probability p� represents the

statistical significance at which the validity of the PTD can
be rejected. Values p� obtained are plotted in Fig. 3 for
192;194Pt. They are very high, but vary considerably with
E½�0

�n�. Therefore, we undertook further analyses to im-

pose limits on E½�0
�n�.

To understand how this was achieved, consider a set of
n0 independent variables fgig distributed normally with
zero mean and unit variance. For such a set, the statistics

Z ¼ n�ð1=2Þ
0

Xn0
i¼1

gi and Z2 ¼ Xn0
i¼1

ðgiÞ2; (4)

will be governed by the same normal distribution, and by a
�2 distribution with � ¼ n0 degrees of freedom, respec-

tively. Therefore, for a set of values fgexpti g deduced in an
appropriate manner from experiment, it is straightforward
to use Z and Z2 to calculate probabilities for rejecting the
null hypothesis that this set is consistent with the men-
tioned normal distribution.

To employ these statistics, variable �0
n [8] needs to be

transformed to variable g obeying the considered normal
distribution. This was accomplished in two steps. First, the
marginal CDF for the above-threshold widths

H0
�0
n
ð�0

njE½�0
n�Þ ¼

Z �0
n

0

Z Emax

0
h0ðE;�

00
n j1; E½�0

n�ÞdEd�00
n ;

(5)

was used to transform �0
n to the variable r, which follows a

uniform distribution. This was achieved by substitution
r ¼ H0

�0
n
ð�0

njE½�0
n�Þ. In the second step, with the aid of

the inverse CDF of the normal distribution with zero
mean and unit variance, G�1ðrÞ, we made a transformation

r ! g, specifically by g ¼ G�1ðrÞ. Then, quantities ri ¼
H0

�0
n
ð�0expt

�in
jE½�0

�n�Þ for i ¼ 1; 2; . . . ; n0; and hence sets

fgexpti g were calculated using values �0
�in

> T0ðE�i
Þ from

the experiments. Following this procedure, we easily de-
termined probabilities pZ ¼ PðZ > ZexptjE½�0

�n�Þ and

pZ2 ¼ PðZ2 < Z2
exptjE½�0

�n�Þ. Here, for a fixed value

E½�0
�n�, values of Zexpt and Z

2
expt are given by Eqs. (4) after

replacement gi ! g
expt
i . Hence, probabilities pZ and pZ2

represent separate statistical significances for rejecting the
PTD at various values of E½�0

�n�. Both probabilities, calcu-
lated from 192;194Pt data, are plotted in Fig. 3. As seen, the
critical values of E½�0

�n� for testing the validity of the PTD

range from 5.3 to 6.9 meV and from 15.0 to 18.3 meV for
192Pt and 194Pt, respectively.
Before proceeding further, we performed an additional

analysis to verify that p-wave contamination was negligi-
bly small. To this end, we performed ML calculations
based on a hybrid PDF for a mixture of s and p observables
gJ��n obeying two separate PTDs:

h01ðE�; gJ��nj�0; �1; �Þ ¼ D

4

1 eV1=2

�0E
1=2
�

f

�
gJ��n

�0

1 eV1=2

E1=2
�

��������1
�
þ �

3D

4

1 eV3=2

�1E
3=2
�

f

�
gJ��n

�1

1 eV3=2

E3=2
�

��������1
�
:

Here, �0 and �1 stand for expectation values E½�0
�n� and E½gJ��nð1 eV=E�Þ3=2� referring to s-wave and p-wave

resonances, respectively, while � represents the J-independent resonance-density ratio �J�=�Jþ . The PDF h01 is defined
in the region limited from below by threshold T01 ¼ a01E

3=2
n with a01 	 a0 which is at the same time safely higher than
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FIG. 2. Plot of zð�; E½�0
�n�Þ constructed from the 194Pt data.
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FIG. 3. Values of probabilities Pð�̂ > �̂exptÞ, PðZ > ZexptÞ and
PðZ2 < Z2

exptÞ as functions of E½�0
�n� deduced from data on

neutron resonances of 192;194Pt. Values referring to statistics �,
Z2, and Z are plotted by symbols d, 5, and 4, respectively.
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experimental threshold T ¼ aE3=2
n . We assumed that �1 is

J independent. For mass numbers A � 190, this is justified,
as it holds with about 1% precision that g1=2=g3=2 ¼
fð3=2Þ=fð1=2Þ, where fðJÞ is the resonance-density spin
factor [9]. Factor D ensures the unit norm of h01.

Following a path analogous to that described above, we
constructed ML function Lð�0; �1Þ and arrived at esti-
mates �̂0 and �̂1 given in Table I. In case of 192Pt, �̂1

has been determined indirectly, see Table I. The method of
its determination is supported by the fact that ratios �̂0=�̂1

for 194;196Pt are within their rms uncertainties equal each
other. In Table I, values of the dimensionless, energy-

independent quantity R ¼ ð1 eV3=2Þa0=�̂1, which repre-
sent ratios of T0ðEnÞ to local expectation values E½��n� for
p-wave resonances, are listed for 192;194Pt targets. From
these values and their rms uncertainties, we calculated
probabilities of 0.069% and 0.0047% for 192Pt and 194Pt,
respectively, that among the observables gJ��n > T0ðE�Þ,
there occurs one which belongs to a p-wave resonance,
thus verifying that p-wave contamination is negligible.

With the question of p-wave contamination settled then,
the data in Fig. 3 indicate that for s-wave resonances in
192Pt and 194Pt, the validity of the PTD is rejected with
statistical significance levels S192 ¼ 0:9970 and S194 ¼
0:9975, respectively, in excellent agreement with our initial
ML analysis. Because results for the two isotopes should
be independent, the combined probability that the PTD is
valid is less than 1:2� 10�5. Although we have shown
above that it is very unlikely, if a p-wave intruder occurs
among the s-wave 192Pt observables, we calculate that if
the resonance having the smallest gJ��n value (relative to
threshold T0) is considered to be p wave, this probability
will increase in the worst case to 2:8� 10�5.

We conclude that our data reject the validity of the PTD
with a statistical significance of at least 99.997%. This
inescapable conclusion has been made thanks to rich ex-
perimental data obtained using state-of-the-art neutron
spectroscopy, and the implementation of a novel approach
for testing the PTD. On the other hand, equally convincing
evidence that the PTD holds for some or the majority of
heavy and intermediate-weight nuclei is still missing.

This result implies that at least one of the three assump-
tions behind the PTD is violated. For energies of the
measurements reported herein, only elastic scattering is
possible, so the single-channel assumption is valid. Also,
addition of another channel would result in � > 1, which
would disagree even more strongly with the data than
the PTD does. Violation of time-reversal invariance also

implies � > 1, and therefore also is excluded. Hence,
our results indicate the assumption that the widths are
statistical is violated. However, there are no indica-
tions of nonstatistical effects such as doorway states in
the data.
One possible explanation is suggested by the calcula-

tions of Ref. [10] in which it was found that transition
strength distributions deviated further from the PTD, in the
direction of smaller �, as model quantum-mechanical sys-
tems became more collective. Hence, our result that � �
0:5 for the 192;194Ptþ n systems suggests the surprising
conclusion that 193;195Pt display regular, rather than the
expected chaotic, behavior at relatively high excitations
near the neutron threshold.
Alternatively, our results also could be interpreted as

indicating that the PDF for reduced neutron width ampli-
tudes for the 192;194Ptþ n systems are not form invariant.
In Ref. [11], it was shown that this form-invariance as-
sumption could replace the original [3] somewhat qualita-
tive ‘‘statistical’’ assumption as part of a more general
derivation of the PTD. Violation of this assumption could
have far-reaching consequences.
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