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The superfluid to normal fluid transition of dipolar bosons in two dimensions is studied in a broad

density range by using path integral Monte Carlo simulations and summarized in the phase diagram.

While at low densities we find good agreement with the universal results depending only on the scattering

length as, at moderate and high densities the transition temperature is strongly affected by interactions and

the excitation spectrum of quasiparticles. The results are expected to be of relevance to dipolar atomic and

molecular systems and indirect excitons in quantum wells.
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Dipolar bosonic systems are of increasing interest for
various recent experiments studying the onset of super-
fluidity in nonideal Bose systems and its connection with
correlation and quantum degeneracy effects. Examples
include dipolar gases, as in recent studies of 52Cr atoms
[1], bosonic molecules, e.g., SrO, RbCs, LiCs, and
40K87Rb [2], as well as indirect excitons in semiconductor
quantum wells [3,4]. A number of theoretical and compu-
tational studies have addressed the properties of two-
dimensional (2D) repulsive dipolar bosons at zero and
low temperatures [5–7]. They include the ground-state
energy and the structural and coherence properties, such
as the one-body density matrix and the condensate fraction.
Quantum Monte Carlo studies at T ¼ 0 have covered the
whole range of coupling strengths up to the crystallization
transition. However, the finite-temperature properties, in
particular, the superfluid transition temperature Tc, remain
unexplored.

Previous numerical investigations for 2D homogeneous
Bose gases [8,9] have shown that in the dilute (weak
coupling) regime na2s & 10�2, where n is the density and
as the s-wave scattering length, the exact shape of the
interaction potential is irrelevant for Tc which is a function
of na2s only [10]:

TcðnÞ ¼ 2�@2n

mkB

1

lnð�=4�Þ þ ln lnð1=na2sÞ
; (1)

where the numerical coefficient is � ¼ 380ð3Þ [11].
However, for moderate and high densities where correla-
tion effects are important, no analytical expression is avail-
able for Tc, calling for investigations by direct numerical
simulations which is the main goal of the present paper. By
performing first-principles path integral Monte Carlo
(PIMC) simulations, we demonstrate that, with increasing
interaction strength, the superfluid phase is first stabilized
(Tc increases) and then destabilized and vanishes when the
system forms a dipolar solid. This results in a nonmono-

tonic behavior of Tc. We also discuss whether and how this
behavior is related to the excitation spectrum.
Model and parameters.—We focus on a pure dipole

model relevant, e.g., for various bosonic atoms or mole-
cules and indirect excitons at low densities where the
dipole moment is a free parameter which can be externally
controlled, e.g., via an electric field [4,12]. The 2D dipole
system is described by the Hamiltonian

Ĥ ¼ �XN
i¼1

@
2r2

i

2m
þ 1

2

X
i�j

p2

�bjri � rjj3
; (2)

which is brought to a dimensionless form by using the units
a ¼ 1=

ffiffiffi
n

p
and E0 ¼ @

2=ma2. The system properties are
defined by the dipole coupling D ¼ p2=�ba

3E0 and the
temperature T ¼ kBT=E0. The thermodynamic equilib-
rium states of system (2) were sampled by PIMC simula-
tions with the worm algorithm [13]. For each parameter set
ðT;DÞ about 107 MC samples have been used. The number
of time slices has been varied as M� 1=T, with M ¼ 200
for the lowest temperature T ¼ 0:5. No Ewald summation
was used since it has practically no influence on the finite-
size scaling of the superfluid density. We studied the sys-
tem (2) fromweak to strong coupling,D ¼ 0:01; . . . ; 20. In
agreement with Refs. [5–7] we observe formation of a
crystalline phase at D ’ 18.
Superfluid transition and phase diagram.—In 2D the

superfluid-normal phase transition occurs at a finite tem-
perature Tc and follows the Berezinskii-Kosterlitz-
Thouless scenario induced by interaction effects [14]. To
obtain a reliable result for Tc in the thermodynamic limit

Tcð1Þ from simulations of a finite system of size L ¼ ffiffiffiffi
N

p
,

we apply a finite-size scaling analysis to TcðLÞ. We assume
the essential singularity [15] of the correlation length

�ðTÞ � eat
�1=2

, t ¼ ðT=Tc � 1ÞjT!Tc
, with a being a non-

universal temperature-density-dependent scaling factor.
Near Tc the role of � is taken over by L, leading to [b is
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a constant; cf. Fig. 1(b)]

TcðLÞ ¼ Tcð1Þ þ b

ln2ðLÞ ; nsðTc; LÞ ¼ 2mkB
�@2

Tc; (3)

where TcðLÞ is determined by the scenario of the universal
jump of the superfluid fraction (second equation) [16].
Here, the superfluid density ns is obtained via the winding
number estimator [17] nsðT; LÞ ¼ mkBThW2iðT; LÞ=2@2,
which is directly evaluated by PIMC simulations.

In Fig. 1, we show the temperature dependence and the
finite-size scaling of nsðT; LÞ and TcðLÞ. We observe that
TcðLÞ shifts systematically with L to lower values
[Fig. 1(a)]. The extrapolation to the thermodynamic limit
Tcð1Þ, fitting the simulation data by Eq. (3), is reported in
Fig. 1(b). For strong coupling (D � 10) the finite-size
corrections to Tc become important; therefore, we ex-
cluded from the fit the smallest system (N ¼ 36).

Using the extrapolated data Tcð1; DÞ, we construct the
phase diagram; cf. Fig. 2 and Table I. At small coupling
D & 0:01, our results are well reproduced by the asymp-
totic expression (1); i.e., here, details of the interaction
potential are not important. However, the validity range of
Eq. (1) is limited to very low densities na2s & 10�3 [com-
puting the scattering length from the solution of the
Schrödinger equation for 2D dipoles gives the relation
na2s � 10:05D2]. This density is an order of magnitude
smaller than for a 2D gas of hard disks [9], indicating that
the long-range character of the dipole interaction causes
substantially earlier deviations from the dilute gas limit.

Now we analyze the change of the superfluid transition
temperature Tc with coupling (Fig. 2). For small D, Tc

monotonically increases and reaches a maximum around
1<D< 2, whereas, for larger couplings, Tc monotoni-
cally decreases again until the system freezes into a non-
superfluid dipole crystal. This is preceded by a narrow
hysteresis region (15<D< 18), shown by the vertical
dashed lines, where a bubble-type structure is expected
[18], which, however, is beyond the scope of the present
Letter.

Since in 2D the critical temperature and normal density
are linearly related to each other, Tc / nsðTcÞ ¼
n� nnðTcÞ, the maximum of Tc (at fixed total density)
corresponds to the minimum of nn around D� 1:75. It is
thus interesting to investigate to what degree the normal
density is described by a quasiparticle (QP) picture and
whether nn is dominated by the phonon and roton quasi-
particle excitations similarly to the bulk 4He superfluid.
For the Berezinskii-Kosterlitz-Thouless transition one ex-
pects that vortices play an important role, especially for
large vortex fugacity. Below, we will show that in the

present system, indeed, the QP contribution nQPn ðTc;DÞ to
the full normal density is low.
Excitation spectrum.—The excitation spectrum !ðqÞ

has an upper bound given by the Feynman relation [19]

FIG. 1 (color online). (a) Superfluid fraction nsðTÞ for D ¼ 5
and different system sizes N ¼ 36, 49, 81, and 324. Crossing
with the dash-dotted line nsðTcÞ ¼ 2mkBTc=�@

2 gives the criti-
cal temperature TcðL ¼ ffiffiffiffi

N
p Þ. (b) System size scaling of TcðLÞ

for several coupling strengths D.

FIG. 2 (color online). (a) Phase diagram in the T-D plane. The
system is superfluid below the solid (blue) line. The two vertical
dashed lines bound the gas-solid hysteresis region to the right of
which the system is in a dipole crystal phase [5–7,27]. The
horizontal dashed line is the upper bound for Tc obtained by
replacing ns ! n. The dotted line denotes the estimate for Tc

according to Eq. (1). (b) D dependence of the normal density nn
(PIMC result), the quasiparticle contribution nQPn [Eq. (6)], and
the phonon-roton contribution [Eqs. (7) and (8), respectively] for
T ¼ Tc. The difference nmn ¼ nn � nQPn is given in Table I.

TABLE I. Coupling parameter dependence of the superfluid
transition temperature Tc, the superfluid fraction �sðTcÞ ¼
2mTc=�@

2n, the sound speed c [in units of the dipole frequency
(!D �a), !2

D ¼ 2�p2n=ðm �a3Þ, and �a ¼ ð�nÞ�1=2], the roton gap
�, and the missing normal density nmn ðTcÞ.

D Tc½E0� �sðTcÞ c �½E0� nmn ðTcÞ
0.01 1.174(2) 0.75 3.60 � � � 0.12

0.1 1.304(7) 0.83 2.23 � � � 0.13

1 1.400(4) 0.89 1.59 � � � 0.10

1.75 1.391(5) 0.88 1.48 13.02 0.11

3 1.353(5) 0.86 1.41 11.73 0.13

5 1.294(4) 0.82 1.36 10.00 0.17

7.5 1.216(6) 0.77 1.31 8.35 0.21

10 1.123(7) 0.71 1.30 7.12 0.26

12.5 1.006(4) 0.64 1.28 6.06 0.32

15 0.906(3) 0.58 1.28 5.27 0.38
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generalized to finite temperatures:

!ðqÞ � !FðqÞ; !FðqÞ tanh
�
@!FðqÞ
2T

�
¼ @q2

2mSðq; TÞ ;
(4)

where Sðq; TÞ is the static structure factor. The latter was
computed below and above Tc: 0:5� T � 3:3; cf. Fig. 3(a).
As D approaches the crystallization point, a sharp peak
develops near the wave number q0 corresponding to the
mean interparticle distance q0a ¼ 2�. While Sðq; TÞ
shows some T dependence for qa < 3, !Fðq; TÞ stays al-
most unchanged in a broad temperature interval T & 3:3
and is close to the ground-state result [7,20]. Therefore, the
spectra shown in Fig. 4 for T ¼ 0:5 are representative for
the low-temperature behavior.

In the long wavelength limit qa ! 0, !F yields a linear
dispersion: !FðqÞ ¼ cq; cf. Fig. 4(a), which is in agree-
ment with the result for classical 2D dipoles [21,22]. Our
results for the sound speed, cðTÞ ¼ !Fðq; TÞ=qjq!0, ex-

tracted from the data for N ¼ 324 particles are summa-
rized in Table I and agree within 4% with the ground-state
values of Ref. [7].

A significant improvement of the spectrum is achieved
by using a sum-rule approach [23,24] by combining the
PIMC results for Sðq; TÞ and the static density response
function �ðq; TÞ. This yields a rigorous upper bound

@!ðqÞ � @!�ðq; TÞ ¼ 2nSðq; TÞ=�ðq; TÞ;

�ðqÞ ¼ �
Z �

0
Fðq; �Þd�; Fðq; �Þ ¼ 1

N
h	̂qð�Þ	̂qð0Þi;

(5)

where �ðqÞ is obtained from the imaginary-time density-
density correlation function Fðq; �Þ directly evaluated in
our PIMC simulations. With the increase of D, �ðqÞ
sharpens and its peak shifts continuously towards q0; cf.
Fig. 3(b).

In Fig. 4, we show !� [Eq. (5)] together with the

Feynman spectrum and the correlated basis functions
(CBF) result [25] at four dipole couplings. All three ap-
proximations show the same general trend which resem-

bles superfluid helium: With increasing coupling the
spectrum develops a roton minimum at finite q � q0 which
becomes deeper with increasing D. While for qa & 1:5
(sound range) all approaches are in quantitative agreement,
for qa > 2 the Feynman approximation becomes inaccu-
rate. Its error increases with D and exceeds 100% at the
crystallization point for !ðq0Þ. The PIMC result !�ðqÞ
agrees surprisingly well with !CBFðqÞ. Our simulations
predict a deeper minimum !ðq0Þ and are expected to be
more accurate here. Furthermore, for q * 7:5, the upper
bound !�ðqÞ approaches a free-particle spectrum (similar

to !F), except for D * 15, whereas CBF, at strong cou-
pling (D ¼ 15), shows the onset of a plateau. In analogy
with superfluid 4He a plateau might be expected at twice
the roton minimum energy, but it appears that all schemes
violate this threshold which calls for further improvement
of the theory.
The obtained spectra!�ðpÞ allow us, via a numerical fit,

to extract the important parameters (c, �, p0, and
) of the
lowest energy quasiparticles: phonons with the dispersion

"
ph
p ¼ cp and rotons "rp ¼ �þ ðp� p0Þ2=2
. The roton

gap � (cf. Table I) in the liquid phase is found to decrease
exponentially with the dipole coupling: �ðDÞ=E0 ¼
a1 expð�a2D� a3D

2Þ, with the best fit parameters: a1 ¼
15:11ð5Þ, a2 ¼ 0:088ð2Þ, and a3 ¼ �0:00120ð8Þ, whereas
at the crystallization point we find �ðD ¼ 18Þ=E0 ¼ 4:57.
QP contribution to the normal density.—While PIMC

simulations yield accurate results to the excitation spec-
trum, they do not directly provide access to dynamical
properties. Therefore, we can only estimate the QP con-
tribution to the normal density by using the Landau for-
mula for noninteracting quasiparticles [26] together with
the computed excitation spectrum "p ¼ @!�ðp;D; TÞ (we
used m ¼ 1):

FIG. 3 (color online). (a) Static structure factor and (b) density
response function at T ¼ 0:5 (solid lines) and T ¼ 3:3 (dashed
lines) for three couplings D ¼ 0:1, 1, and 10 (numbers in the
figure).

(a) (b)

(d)(c)

FIG. 4 (color online). Excitation spectrum "q ¼ @!ðq; TÞ for
T ¼ 0:5 and different couplings D. PIMC results !F [Eq. (4)]
and !� [Eq. (5)] are compared with the CBF spectra (D ¼ 1, 4,

8, and 16), Ref. [25], and ð@qÞ2=2m (short dashed lines).
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nQPn ðTÞ ¼ � 1

2

1

ð2�@Þ2
Z 1

0
d2pp2 dnB

d"p
; (6)

where nB ¼ ½e�"p � 1��1 is the Bose distribution function.

At low temperatures the main contribution to nQPn comes
from phonons and rotons [26] with the following result in
2D:

nphn ¼ 3 �"ph

2c2
¼ 3�ð3Þ

2�

ðkBTÞ3
@
2c4

¼ 0:574
ðkBTÞ3
@
2c4

; (7)

nrn � �p2
0

2
nr; nrðTÞ ¼ p0

2�@2
e���ð2�
kBTÞ1=2: (8)

The D dependence of n
ph
n , nrn, and nQPn (6) is shown in

Fig. 2(b). At weak coupling D & 1, there is no roton
minimum in the spectrum [cf. Fig. 4, D ¼ 1] and nrn ¼
0, nphn ≂nQPn . By increasing D, the QP contribution nQPn to
the normal density monotonically decreases from 53%, at
D ¼ 0:01, to 3% at D ¼ 1:75–3. This is due to the mono-

tonic decrease of nphn with D since, at a fixed temperature,

the sound speed increases with coupling, c�D1=2; cf.
Table I. This tendency is reversed with the formation of
the roton minimum. For D * 1:75 (cf. Fig. 4), the phonon
excitations are practically negligible and the rotons domi-
nate due to the larger density of states (� qdq). The roton

density nrn ≂nQPn monotonically increases with D [cf.
Fig. 2(b)] due to the reduction of the roton gap; cf.
Table I. Near crystallization (D ¼ 15) the contribution of
quasiparticles to nn increases to 10%.

These competing trends of phonons and rotons give rise

to a minimum in the sum nphn ðDÞ þ nrnðDÞ at a coupling
around D ¼ 1:75 which rather well reproduces the full

quasiparticle density nQPn ðDÞ. We notice that the position
of this minimum is very close to the maximum of the
superfluid transition temperature Tc which is observed in
the range D ’ 1–1:75. Yet this agreement is not sufficient
to explain the nonmonotonic behavior of Tc, as the picture
of noninteracting QP accounts just for a few percent of the
normal density which is by itself an unexpected result. The

D dependence of the ‘‘missing’’ normal density nmn ¼
nn � nQPn is listed in Table I. This density can arise from
a variety of effects such as interactions of quasiparticles,
multiexcitations [25], and vortices. In particular, large
scale vortices are key for the Berezinskii-Kosterlitz-
Thouless theory.

In conclusion, the finite-temperature phase diagram of a
2D dipole system has been investigated by first-principles
PIMC simulations over the entire coupling regime. We
found that the superfluid density at Tc does not exceed
90% and drops to about 58% near the crystallization point.
An upper bound for the single-particle spectrum has been
computed which significantly improves the result of the
Feynman approximation. The superfluid transition tem-
perature shows a nonmonotonic behavior with a maximum
observed around D ¼ 1:75 which coincides with the ap-

pearance of a roton minimum in the excitation spectrum.
We expect that our predictions are of direct relevance for
the experimental search for superfluidity in atomic and
molecular dipole systems as well as for indirect excitons
or polaritons in semiconductor quantum wells. Our results
for Tc should allow us to determine the optimal parameters
in the experiments.
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