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Network Synchronization in a Noisy Environment with Time Delays:
Fundamental Limits and Trade-Offs
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We study the effects of nonzero time delays in stochastic synchronization problems with linear
couplings in an arbitrary network. Using the known exact threshold value from the theory of differential
equations with delays, we provide the synchronizability threshold for an arbitrary network. Further, by
constructing the scaling theory of the underlying fluctuations, we establish the absolute limit of
synchronization efficiency in a noisy environment with uniform time delays, i.e., the minimum attainable
value of the width of the synchronization landscape. Our results also have strong implications for
optimization and trade-offs in network synchronization with delays.
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In network synchronization problems [1], individual
units, represented by nodes in the network, attempt to
adjust their local state variables (e.g., pace, load, orienta-
tion) in a decentralized fashion. They interact or commu-
nicate only with their local neighbors in the network, often
with the intention to improve global performance. These
interactions or couplings can be represented by directed or
undirected, weighted or unweighted links. Applications of
the corresponding models range from physics, biology,
computer science to control theory, including synchroni-
zation problems in distributed computing [2], consensus,
coordination and control in communication networks [3—
6], flocking animals [7,8], bursting neurons [9-11], and
cooperative control of vehicle formation [12].

There has been a massive amount of research focusing
on the efficiency and optimization of synchronization
problems [1,13-16] in various complex network topolo-
gies, including weighted [3,17] and directed [6,18,19] net-
works. In this Letter, we study an aspect of stochastic
synchronization problems which is present in all real com-
munication, information, and computing networks
[5,6,20,21], including neurobiological networks [10,11]:
the impact of time delays on synchronizability and on the
breakdown of synchronization. The presence of time de-
lays, however, will also present possible scenarios for
trade-offs. Here we show that when synchronization net-
works are stressed by large delays, reducing local coordi-
nation effort will actually improve global coordination.
Similarly subtle results have also been found in neuro-
biological networks with the synchronization efficiency
exhibiting nonmonotonic behavior as a function of the
delay [10,11].

For our study, we consider the simplest stochastic model
with linear local relaxation, where network-connected
agents locally adjust their state to closely match that of
their neighbors (e.g., load, or task allocation) in an attempt
to improve global performance. However, they react to the
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information or signal received from their neighbors with
some time lag (as a result of finite processing, queueing, or
transmission delays), motivating our study of the coupled
stochastic equations of motion with delay,

N
a,hi(t) = — Z Cylhi(t— 1) —hj(t— 7)1+ n,(1). (1)
j=1

Here, h;(¢) is the generalized local state variable on node i
and 7),(7) is a delta-correlated noise with zero mean and
variance (n;(t)n;(f')) = 2D6,;;6(t — '), where D is the
noise intensity. C;; = C;; = 0 is the symmetric coupling
strength (C;; = W;;A;; in general weighted networks,
where A;; is the adjacency matrix and W;; is the link
weight). 7;; > 0 is the time delay between two connected
nodes i and j. For initial conditions we use /;(f) = 0 for
t = 0. Equation (1) is also referred to as the Edwards-
Wilkinson process [22] on networks [3] with time delays.

The standard observable in stochastic synchronization
problems, where relaxation competes with noise, is the
width of the synchronization landscape [2,3,15,16]

N
020) = (§ [ro ~FOF).

where A(t) = (1/N) ¥ | h;(t) is the global average of the
local state variables and (- - -) denotes an ensemble average
over the noise. A network of N nodes is synchronizable if
(w?(00)) < 00, i.e., if the width approaches a finite value in
the t — oo limit. The smaller the width, the better the
synchronization.

In the case of uniform delays T =T, the focus of this
Letter, one can rewrite Eq. (1) as

N
dhi(t) = — Z Lijhi(t — 7) + (), (3
=

where I';; = §;,3,C;y — C;;, is the symmetric network
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Laplacian. In this case, by diagonalizing the network
Laplacian, one can decompose the problem into N inde-
pendent modes

A (1) = = My (t = 7) + 7 (0), 4)

where A;, k= 0,1,2,..., N — 1, are the eigenvalues of the
network Laplacian and (#,(¢)7,(¢')) = 2D 8,,6(¢ — t'). For
a single-component (or connected) network, the Laplacian
has a single zero mode (indexed by k£ = 0) with A = 0,
while A, > 0 for k = 1. Using the above eigenmode de-
composition, the width of the synchronization landscape
can be expressed as (w2(1)) = (1/N) ¥¥- (13 (1)) [3].

For example, for zero time delay (7 = 0), one immedi-
ately finds (W?(1)) = (1/N) XY DA '(1 — e 2M). The
above expression explicitly shows that every finite con-
nected network with zero time delay is synchronizable,
(w?(00)) < c0. In the limit of infinite network size, how-
ever, network ensembles with a vanishing (Laplacian)
spectral gap may become unsynchronizable, depending
on the details of the small-A behavior of the density of
eigenvalues [1-3].

In the case of nonzero uniform delays, the case consid-
ered here, the eigenmodes of the problem are again gov-
erned by a stochastic equation of motion of identical form
for all kK =1 [Eq. (4)]. Thus, understanding the time evo-
lution of a single stochastic variable h(r) and its fluctua-
tions will provide both full insight to the synchronizability
condition of the network-coupled system and a framework
to compute the width of the synchronization landscape.
Therefore, to ease notational burden and to direct our focus
to a single stochastic variable, we will temporarily drop the
index k referring to a specific eigenmode, and study the
stochastic differential equation

3,h() = —Ah(t — 1) + 7(D) (5)

with (7()7(¢')y = 2D8(r — ¢'). Using standard Laplace
transformation with initial conditions A(z) = 0 for t = 0,
one finds

esalt=1)

i = [y ©)

1,2, ..., are the solutions of the character-

where s,, @ =
istic equation
s+ Ae ™ =0 @)
in the complex plane. The above complex equation has
an infinite number of solutions for 7 > 0 [5,23,24]. Using
Eq. (6), for the noise-averaged fluctuations we find
5 —2D(1 _ e(Sﬂ,+SB)t)
<h2(t)>=z 1+ 1+ +55)
21+ ms)(1 + 735)(50 + 55)

®)

The solution of Eq. (7) with the largest real part governs the
long-time temporal behavior of the respective mode (e.g.,
stability, approach to, or relaxation in the steady state). The
condition for (A?(c0)) to remain finite is Re(s,) < 0 for all
a. As has been shown for Eq. (7), this inequality holds if

TA < 7/2[5,23,24]. In Fig. 1 we show the time-dependent
width of the fluctuations associated with a single stochastic
variable, obtained by numerically integrating Eq. (5) for a
few characteristic cases [25].

Returning to the context of network synchronization,
synchronizability requires a finite steady-state width,
(w?(00)) = (1/N) ¥¥=(h3(00)) < o0. Thus, for uniform
time delays in a given network, all £k = 1 modes must
have finite steady-state fluctuations (ﬁ%(oo)) < oo, This
implies that one must have 74, < 77/2 for all k = 1 modes,
or equivalently [26],

TAmax < /2. 9)

The above exact delay threshold for synchronizability has
some immediate and profound consequences for un-
weighted networks. Here, the coupling matrix is identical
to the adjacency matrix, C; ;= A; s and the bounds and the
scaling properties of the extreme eigenvalues of the net-
work Laplacian are well known. In particular, Nk, /(N —
1) = Apax = 2kpmax [27], where kp, is the maximum node
degree in the network [i.e., (Ana) = O(kmax))]. Thus,
Thima < 7/4 is sufficient for synchronizibility [26], while
Thimax > /2 leads to the breakdown of synchronization
with certainty. These inequalities imply that networks with
potentially large degrees, e.g., scale-free (SF) networks
[28,29], are rather vulnerable to intrinsic network delays
[5,6]. For example, SF network ensembles with a natural
degree cutoff exhibit (A,) ~ (kmax? ~ N~V for N >
1 (when the average degree (k) is held fixed), where 7 is the
exponent governing the power-law tail of the degree dis-
tribution [30]. In turn, the probability that a realization of a
random SF network ensemble of N nodes is synchroniz-
able approaches zero for any nonzero delay 7 in the limit of
TNV >,

FIG. 1 (color online). Time series (A2(¢)) for different delays,
obtained by numerically integrating Eq. (5) and averaging over
1000 independent realizations of the noise. Here, A = 1, D = 1,
and At = 0.01. The theoretical (continuum-time) threshold
value of the delay (for (2(0)) to remain bounded) is 7. = /2
[25].
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Next, we analyze the steady-state behavior of the width
in the synchronizable regime. We accomplish this by in-
vestigating the basic scaling features of the steady-state
fluctuations of a single stochastic variable, (/1%(c0)), gov-
erned by Eq. (5), which can be associated with an arbitrary
mode. In this regime one must have Re(s,) < 0 for all «, or
equivalently, 7A < 7/2. Defining a new variable z = 7s,
Eq. (7) can be rewritten z + Ate”* = 0, i.e., for a given A
and 7, the solutions for the scaled variable z can only
depend on A7, z, = z,(A7), @ = 1,2,.... Thus, the solu-
tions of the characteristic equation Eq. (7) must exhibit the
scaling form s, = 77 'z,(A7), @ = 1,2, .... Substituting
the above expression into Eq. (8) and taking the r — oo
limit immediately yields the scaling form

(h*(00)) = DTf(AT). (10)

Thus, for a single stochastic variable A(r) governed by the
stochastic differential equation Eq. (5) (simple relaxation
in a noisy environment with delay), plotting (A>(c0))/7 vs
At (for a fixed noise intensity D) should yield full data
collapse, as demonstrated in Fig. 2 [25]. [While we do not
have an analytic expression for the scaling function, for
small arguments it asymptotically has to scale as f(x) =
1/x to reproduce the exact limiting case of zero delay,
(h*(0)) = D/ A. Further, we numerically found that in the
vicinity of /2, it approximately diverges as (7/2 —
x)~'.] The scaling function f(x) is clearly nonmonotonic;
it exhibits a single minimum, at approximately x* = 0.73
with f* = f(x*) = 3.1. The immediate message of the
above result is rather interesting: For a single stochastic
variable governed by Eq. (5) with a nonzero delay, there is
an optimal value of the relaxation coefficient A* = x*/7, at
which point the steady-state fluctuations attain their mini-
mum value (h*()) = D7f* =~ 3.1D7. This is in stark
contrast to the case where (h%(00)) = D/A; i.e., there the
steady-state fluctuation is a monotonically decreasing
function of the relaxation coefficient.

In addition to gaining fundamental insights, constructing
the scaling function f(x) numerically with some acceptable
precision of the single variable problem (Fig. 2 inset) also
provides a method to obtain the steady-state width of the
network-coupled system: one can numerically diagonalize
the Laplacian of the underlying network and employ the
scaling function f(x) to obtain the width,

1 N-1 DT N—-1
(W) = = D (hi(o0)) = — (Aer). AD
)=y 20 v 2SN

Further, we can now extract the minimum attainable width
of the synchronization landscape in a noisy environment
with uniform time delays. For a fixed 7, each term in
Eq. (11) can be minimized by choosing A, = x*/7 for all
k = 1. Then

(W?(00))* = %Drf* ~3.1Dr (12)
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FIG. 2 (color online). Steady-state fluctuations (/(c0)) ob-
tained by numerically integrating Eq. (5) as a function of A for
different 7 values. Here, D = 1, and A7 = 0.01. The inset shows
the scaled plot of the same data points, (>(0))/7 vs A7, together
with the numerically fitted scaling function f(x) (solid curve)
[25].

for large N. This number, the fundamental limit of syn-
chronization efficiency in a noisy environment with uni-
form time delays, can be used as a baseline value when
comparing networks from the viewpoint of synchroniza-
tion efficiency. Note that there is a trivial network which
realizes the optimal behavior: the fully connected graph
with identical coupling constants C;; = x* /Nt for all i #
J. (This network has N — 1 identical nonzero eigenvalues,
Ay = x*/7 for all k =1.) In general, networks with a
narrow spectrum centered about A* = x*/7 shall perform
closer to optimal. How to construct such networks with
possible topological and cost constraints is a different and
challenging question which we will not pursue in detail
here, but we note that essentially the same problem arises
in the broader context of synchronization of generalized
dynamical systems [18,19]. Recent methods tackling this
issue involve locally reweighting and/or removing links
from the networks to achieve optimal performance [19].
The essential nonmonotonic feature of the scaling func-
tion f(x) in Eq. (11) (including the potentially diverging
contributions from large eigenvalues beyond the threshold)
presents various trade-off scenarios in network synchroni-
zation problems with delays. As the simplest and obvious
application of the above results, consider a network which
is stressed by large delays beyond its threshold, 7A,,, >
/2 (so that the largest fluctuations and the width are
growing exponentially without bound). Then even a suit-
ably chosen uniform reduction of all couplings C' = pCij
(A}, = pAp) with p < 71/2 A, 7 Will lead to the stabiliza-
tion of the system, with a finite steady-state width. In
communication and computing networks, the effective
coupling strength C;; can be controlled by the frequency
(or rate) of local synchronizations through the respective
link [2]. The above results then suggest that when the
system is beyond its stability threshold, synchronizing
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FIG. 3 (color online). Time-dependent width for 7=
1.27/2 A, for different values of the local synchronization
rate p on a fixed graph, obtained by the numerical integration
of Eq. (1) with Ar = 0.005 and D = 1.0. The underlying net-
work is a Barabasi-Albert SF graph [28] with N = 100, (k) = 6,
and A, = 32.

sufficiently less frequently can lead to stabilization and
better coordination. Figure 3 shows results for the case
when the communication neighborhood is fixed, but the
local synchronizations through the links [the coupling
terms in Eq. (1)] are only performed with probability p =
1, while invoking the noise term at every time step. Indeed,
reducing the local synchronization rate can improve global
performance. In fact, even performing no local synchroni-
zations at all (p = 0) leads to a slower power-law diver-
gence of the width with time, (w?(¢)) = 2Dt, as opposed to
the exponential divergence governed by the largest eigen-
value(s) above the threshold.

In summary, we have obtained the delay threshold for
the simplest stochastic synchronization problem with lin-
ear couplings in an arbitrary network. Further, by exploring
and investigating the scaling properties of the fluctuations
associated with the eigenmodes of the network Laplacian,
we found the minimum attainable steady-state width of the
synchronization landscape in any network. The nonmono-
tonic feature of the scaling function governing the fluctua-
tions can guide potential trade-offs and optimization in
network synchronization. For systems with more general
(nonlinear) node dynamics, one can also expect that the
synchronizability phase diagram will exhibit nonmono-
tonic behavior as a function of the coupling strength and/
or the delays [10,11,20,21]. In real communication and
information networks, the delays 7;; are not uniform [4],
but are affected by the network neighborhood and spatial
distance. We currently investigate the impact of heteroge-
neous delays on network synchronization.
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