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We present an extensive set of simulation results for the stress relaxation in equilibrium and step-

strained bead-spring polymer melts. The data allow us to explore the chain dynamics and the shear relax-

ation modulus, GðtÞ, into the plateau regime for chains with Z ¼ 40 entanglements and into the terminal

relaxation regime for Z ¼ 10. Using the known (Rouse) mobility of unentangled chains and the melt en-

tanglement length determined via the primitive path analysis of the microscopic topological state of our

systems, we have performed parameter-free tests of several different tube models. We find excellent

agreement for the Likhtman-McLeish theory using the double reptation approximation for constraint re-

lease, if we remove the contribution of high-frequency modes to contour length fluctuations of the

primitive chain.
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High molecular weight polymeric liquids display re-
markable viscoelastic properties [1,2]. Contrary to glassy
systems, their macroscopic relaxation times are not due to
slow dynamics on the monomer scale, but arise from the
chain connectivity and the restriction that the chain back-
bones cannot cross. Based on the tube model [3,4], modern
theories of polymer dynamics combine local Rouse dy-
namics, reptation, contour length fluctuations, and con-
straint release into a complex relaxation scenario [5,6].
The development and validation of a quantitative, micro-
scopic theory crucially depends on the availability of ex-
perimental and simulation data for model systems.

Entangled polymers are studied experimentally using
rheology [1,2,7], dielectric spectroscopy [8], small-angle
neutron scattering [9,10], and nuclear magnetic reso-
nance [11,12]. Computer simulations [13–16] offer some
advantages in the preparation of well-defined model sys-
tems and the simultaneous access to macroscopic behavior
and microscopic structure and dynamics. The recently
developed primitive path analysis (PPA) [17–19] reveals
the experimentally inaccessible mesoscopic structures and
relaxation processes described by the tube model and
allows parameter-free comparisons between theoretical
predictions and data. However, the long relaxation times
pose a particular challenge to computational approaches.
Here we present simulation results for model polymer
melts in equilibrium and after a rapid, volume-conserving
uniaxial elongation, where we have been able to follow
the full relaxation dynamics deep into the entangled re-
gime. The data allow us to perform the first parameter-free
test of the predictions of tube models for dynamical prop-
erties, to pinpoint a problem in the current theoretical
description, and to validate our proposal for a suitable
modification.

Our results are based on extensive molecular dynamics
(MD) simulations of bead-spring polymer melts [13]. Each
chain is represented as a sequence of beads connected by
finite-extensible, nonlinear (FENE) springs and interacting
via the repulsive part of the Lennard-Jones 12-6 potential
(LJ). The energy and distance units are set by the strength
of the LJ interaction and the monomer size, � and �,

respectively. The unit of time is � ¼ �ðm=�Þ1=2, where m
is the monomer mass. The equations of motion are inte-
grated using the LAMMPSMD simulation package [20] with
a velocity Verlet algorithm and a time step �t ¼ 0:012�.
The temperature, T ¼ �=kB, was kept constant by weakly
coupling the bead motion to a heat bath with a local friction
� ¼ 0:5��1.
We have studied seven entangled polymer melts of M

chains of N beads with M�N¼5000�50, 2500� 100,
400� 175, 200�350, 200� 700, 400� 1000, and 320�
3500 each at a monomer density � ¼ 0:85��3. Using the
most refined PPA estimate of the rheological entanglement
length for this model of Ne ¼ 85� 7 [21], the investigated
systems span the range from unentangled (Z ¼ N=Ne �
0:6) to highly entangled (Z ¼ N=Ne � 41). The Rouse
time was previously determined as �R ¼ 1:5�N2 [13], en-
tanglements effects become relevant around �e ¼ �RðNeÞ,
and the maximal relaxation times of entangled systems are
expected to be on the order of �0d ¼ 3�eZ

3 ¼ 3�RZ.
The melts were generated and equilibrated following the

procedure outlined in Auhl et al. [16]. Technically, the
largest challenge is the reliable extraction of the macro-
scopic, viscoelastic behavior [22,23]. Data were recorded
in equilibrium as well as out of equilibrium after a step
strain. Strained melts were prepared by subjecting equili-
brated initial conformations to rapid Tdef 2
½120�; 36 000��), volume-conserving (�x�y�z � 1), elon-
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gational deformations with (�x ¼ �, �y ¼ �z ¼ 1=
ffiffiffiffi
�

p
) for

� ranging from 1.5 to 4.0 well outside the linear elastic
regime. Deformations in this range are typical for many
applications of polymeric systems and large enough to
generate a measurable elastic response for the present
system sizes. In the ideal case, strain should be introduced
instantaneously. To check the dependence of our results on
Tdef , we have varied the deformation time in one case (N ¼
700, � ¼ 3:0) by a factor of 200. In the following, for
deformed systems, t ¼ 0 is fixed to the middle of the
deformation period, i.e., data are recorded for t � Tdef=2.
To reduce finite-Tdef artifacts, we typically discard data
from the initial 3Tdef .

The longest simulations were run up to 2� 109 time
steps and sufficient to reach the plateau regime for our
longest chains and to completely relax the others (2�
109 � 0:012� � �RðN ¼ 4000Þ � �dðZ ¼ 12:5Þ). The to-
tal numerical effort corresponds to about 5� 106 single
core CPU hours. We recorded block averages of the micro-
scopic stress tensor ���ðtÞ ¼ hPijFij;�rij;�i=V at intervals

of 1:2�. The latter sum is over all pairs i, j of interacting
beads, �, � are Cartesian indices, and F, r, and V denote
force, separation, and volume, respectively. Furthermore,
we stored melt conformations at intervals of 120� for
further analysis of the chain conformations.

Results for the relaxation of the normal tension �ðtÞ ¼
�xx � 1

2 ð�yy þ �zzÞ are presented in Fig. 1(a). We observe

a clear non-Newtonian behavior with a stress relaxation
extending over many orders of magnitude in time after the
end of the deformation period of the sample. As expected,
there is a strong increase of the terminal relaxation time
with chain length and the gradual formation of an inter-
mediate plateau in the stress relaxation for the longest
chains studied. The maximal relaxation time is indepen-
dent of the total deformation.

Figs. 1(b)–1(d) show comparisons between �ð�; tÞ=hð�Þ
for the step-strained melts to the linear shear relaxation
moduliGðtÞ obtained by Likhtman et al. [23] and ourselves
via the Green-Kubo relation GðtÞ ¼ Vh�xyðtÞ�xyð0Þi=kBT
from stress fluctuations in equilibrium melts. Available
expressions for damping functions hð�Þ are refinements
of the classical stress-strain relation hð�Þ ¼ �2 � ��1

[Fig. 1(b)]. The Doi-Edwards [24] damping function
[Fig. 1(c)] is derived from a uniform chain retraction inside
the stretched tube and saturates to a strain-independent
value. The Rubinstein-Panyukov slip-tube damping func-
tion [25], hRPð�Þ ¼ ð�2 � ��1Þ=ð0:74�þ 0:61��1=2 �
0:35Þ, accounts for nonaffine tube deformations and the
asymptotic chain length redistribution inside the tube
[Fig. 1(d)]. hRP and hDE are nearly indistinguishable for
� � 2. For the present systems and at times t > �RðNÞ,
both damping functions result in a satisfactory data col-
lapse and good agreement with the Green-Kubo results.
For times t < �RðNÞ, the presence of additional relaxation
processes prevents a systematic extraction of GðtÞ from
normal tensions measured in the nonlinear regime. While

the slip-tube expression works surprisingly well, we have
nevertheless restricted the step-strain data in Figs. 2 and 3
to times t > 0:25�RðNÞ.
In Fig. 2(a) we show a comparison of the simulation

results for GðtÞ to the Rouse model predictions [5,26] for
unentangled systems. Our results confirm the expectation
that the Rouse model quantitatively describes the chain

length independent early-time stress relaxation withGðtÞ /
t�1=2 as well as terminal stress relaxation in systems where
the chains are too short to be entangled. For longer chains,
entanglements start to affect the behavior beyond a
material-specific, characteristic time �e � 104� with a
gradual formation a plateau in the stress relaxation reached
by our longest chain systems with Z ¼ 41. For the terminal
stress relaxation of systems with Z ¼ Oð10Þ we have
reliable data extending about 1 order of magnitude below
the plateau level. This is sufficient to allow for a mean-
ingful comparison to current theories. In particular, we are
not restricted to comparing the ability of different theories
to fit the data. Rather, we can carry out absolute,
parameter-free comparisons using the result Ne ¼ 85� 7
[18] of the primitive path analysis and the known Rouse
friction of the model.
Likhtman and McLeish (LM) [27] assembled the effects

of (i) early-time Rouse relaxation, (ii) tension equilibration
along the contour of the primitive chains, (iii) reptation,
(iv) contour length fluctuations, and (v) constraint release
into a closed functional form,

GðtÞ
�kBT
N

¼1

5

XZ
p¼1

ð4	ðtÞRðtÞþe�tp2=�RÞþ XN
p¼Zþ1

e�2tp2=�R ; (1)

FIG. 1 (color). (a) Normal tensions, �ð�; tÞ for step-strained
melts N ¼ 50 (black), 100 (blue), 175 (green), 350 (red), 700
(cyan), 1000 (violet), and 3500 (orange) and elongation � ¼ 2
(w), 3 (e), and 4 (4). (b)–(d) Green-Kubo shear relaxation
moduli, GðtÞ, (this work: large solid 	 with solid line; Ref. [23]:
no symbol, solid line) compared to extrapolations, Gð�; tÞ ¼
�ð�; tÞ=hð�; tÞ, from the nonlinear response using the (b) clas-
sical, (c) Doi-Edwards, (d) slip-tube damping function [same
symbols as in (a)]. Colored ticks indicate the Rouse time of the
corresponding systems.
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where 	ðtÞ and RðtÞ account for single- and multichain
relaxation processes of the tube model. In their absence
[	ðtÞ ¼ RðtÞ � 1], the formula describes a crossover from

the early time Rouse relaxation GðtÞ / t�1=2 to a plateau

G0
N ¼ 4

5
�kBT
Ne

. The key quantity of the tube model is the

single-chain memory function, 	ðtÞ, for the fraction of
the primitive chain which has not escaped from its origi-
nal tube after a time t. Comparisons to the data neglect-
ing constraint release [RðtÞ � 1] are shown for the origi-
nal Doi-Edwards model accounting only for reptation
[Fig. 2(b)], Doi’s [5] approximate inclusion of the effect
of contour length fluctuations combining reptation dynam-
ics with the maximal relaxation time from [27] [Fig. 2(c)],
and the full LM theory [27] of contour length fluctuations
and reptation [Fig. 2(e)]. For the comparisons in Figs. 2(d)
and 2(f) we have included the effect of constraint release in
the double reptation [28] approximation RðtÞ ¼ 	ðtÞ.

The overall agreement between our data and the more
advanced versions of the tube model is fairly good.
Interestingly, the more sophisticated LM theory seems to
work less well than Doi’s approximation when combined
with the LM estimate of the maximal relaxation time. Yet,
from our rheological data alone, it is hard to clearly iden-
tify the relevance and the quality of the theoretical descrip-
tion of the various relaxation processes. For example, one
might (as we believe, erroneously; see below) conclude,
that the double reptation approximation strongly overesti-
mates the contribution of constraint release to the stress
relaxation [Figs. 2(e) and 2(f)] or that constraint release is

inefficient for Z < 4 [Figs. 2(c) and 2(d)]. Obviously, fit-
ting the various theories to the data would only obscure
their shortcomings.
To draw definite conclusions on how to improve the

theories, we discriminate between three possible sources
of error: (i) the functional form of Eq. (1), (ii) the treatment
of reptation and contour length fluctuations underlying the
single-chain memory function 	ðtÞ, and (iii) the treatment
of the multichain effect of constraint release via the double
reptation approximation, RðtÞ ¼ 	ðtÞ. For long chains and
under the assumption that the escaped chain sections
equilibrate completely, 	ðtÞ equals the autocorrelation
function of the chain end-to-end vectors [6], For shorter
chains, it is more suitable to consider the end-point motion
of the primitive chains, defined as the average of the chain
conformation over a period of �e [29]. This correlation
function is easily accessible from our equilibrium simula-
tions and is not affected by constraint release [6]. The
comparison between the measured relaxation moduli and
those predicted from Eq. (1) using the measured 	ðtÞ
together with RðtÞ � 1 and RðtÞ ¼ 	ðtÞ is shown in
Figs. 3(a) and 3(b) respectively. For the full theory the
agreement is excellent, supporting the utility of both the
Likhtman-McLeish functional form of the shear relaxation
modulus and of the double reptation approximation for
constraint release.
The shortcomings of the LM description apparent in

Fig. 2(f) and in the rheological study by Liu et al. [7]
must thus be related to the central part of their theory, the
estimation of the time dependence of 	ðtÞ under the com-
bined influence of reptation and contour length fluctua-
tions. A possible explanation is a double counting of the
effect of short-wavelength (p > Z) modes in the Rouse
relaxation part of Eq. (1) and in	ðtÞ. LM extrapolated	ðtÞ
to the continuum limit, resulting in a decay on time scales

FIG. 3 (color). Comparison of the measured relaxation moduli
to Eq. (1) using (a),(b) the independently measured autocorre-
lation function of the primitive chain end-to-end vectors to
estimate of the tube memory function, 	ðtÞ; (c),(d) our propo-
sition Eq. (2) for removing high-frequency modes from the
Likhtman-McLeish theory [27] of contour length fluctuations
with � ¼ 1:7. Symbols and colors as in Fig. 2.

FIG. 2 (color). Comparison of the measured relaxation moduli
to the predictions of various theories. Symbols and colors for the
simulation data as in Fig. 1 with Green-Kubo data shown as large
solid 	 and h. Theoretical predictions are shown as thick lines
using the same color code. Thin lines indicate the uncertainty in
the theoretical predictions due to the uncertainty of the PPA
entanglement length Ne ¼ 85� 7.
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t < �e, where the motion of the primitive chain should be
negligible. To correct for this, we have removed from the
CLF part of 	ðtÞ the contribution of modes with a relaxa-
tion time shorter than �4�e:

	ðtÞ ¼ ZLM

Z

�
8 ~Gf


2

Xp


p¼1;odd

e�tp2=�df

p2

þ
Z ð�4�eÞ�1

�


0:306e��t

ZLM�
1=4
e �5=4

d�

�
(2)

with ~GfðZLMÞ, �dfðZLMÞ, p
ðZLMÞ, and �
ðZLMÞ as de-
fined in the original LM theory, which is recovered for� �
0. In particular, we find ZLM ¼ Zþ R1

1=ð�4�eÞ
0:306

�1=4e �5=4
d� ¼

Zþ 1:22� in qualitative agreement with arguments
put forward by van Ruymbeke et al. [30] to consider,
within the original LM theory, chains with virtual ex-
tensions of length Ne. Adjusting � to values of order one
leads to drastically improved agreement between the pre-
dicted and the measured values for GðtÞ [Fig. 3(d)] and
for the primitive-chain end-to-end vector correlation
functions.

To summarize, we have presented an extensive set of
simulation results for the equilibrium and relaxation
dynamics of entangled model polymer melts. In particu-
lar, we explored GðtÞ into the plateau regime for chains
with Z ¼ 41 and into the terminal relaxation regime for
Z � 10 and compared our data to predictions of different
versions of the tube model. Most comparisons did not
involve free parameters, since the entanglement length
was determined independently via a topological analysis
[17,18]. We find excellent agreement for the Liktman-
McLeish theory using a corrected tube memory function
and the double reptation approximation for constraint re-
lease, demonstrating that the primitive path analysis of the
microscopic structure endows the tube model with predic-
tive power for dynamical processes. The use of more
elaborate schemes [31] for treating constraint release and
predicting the function R½	ðtÞ� should lead to even better
agreement.
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