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We demonstrate that the extraordinary waves in indefinite metamaterials experience an (��þþ)

effective metric signature. During a metric signature change transition in such a metamaterial, a

Minkowski space-time is created together with a large number of particles populating the space-time.

Such metamaterial models provide a tabletop realization of metric signature change events suggested to

occur in Bose-Einstein condensates and quantum gravity theories.
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The unprecedented degree of control of the local dielec-
tric permittivity "ik and magnetic permeability �ik tensors
in electromagnetic metamaterials has fueled the recent
explosion of novel device ideas, and resulted in the dis-
covery of new physical phenomena. Advances in experi-
mental design and theoretical understanding of
metamaterials greatly benefited from the field theoretical
ideas developed to describe physics in curvilinear space-
time. Electromagnetic cloaking [1–3] and electromagnetic
wormholes [4] may be cited as good examples. With the
newfound freedom of "ik and �ik manipulation, experi-
mentalists may create optical models of virtually any met-
ric allowed in general relativity [5]. Recent literature [6–9]
provides good examples of how it is being achieved in the
case of optical analogues of black holes. On the other hand,
compared to standard general relativity, metamaterial op-
tics gives more freedom to design an effective space-time
with very unusual properties. Light propagation in all static
general relativity situations can be mimicked with positive
"ik ¼ �ik [10], while the allowed parameter space of the
metamaterial optics is broader. Thus, the flat Minkowski
space-time with the usual (�;þ;þ;þ) signature does not
need to be a starting point. Other effective signatures, such
as the ‘‘two times’’ (2T) physics (�;�;þ;þ) signature
may be realized [11]. Theoretical investigation of the 2T
higher dimensional space-time models had been pioneered
by Dirac [12]. More recent examples can be found in
[13,14]. Metric signature change events [in which a phase
transition occurs between, say, (�;þ;þ;þ) and
(�;�;þ;þ) space-time signature] are being studied in
Bose-Einstein condensates and in some modified gravita-
tion theories (see Ref. [15], and the references therein). It is
predicted that a quantum field theory residing on a space-
time undergoing a signature change reacts violently to the
imposition of the signature change. Both the total number
and the total energy of the particles generated in a signature
change event are formally infinite [15]. Therefore, such a
metric signature transition can be called a ‘‘big flash,’’
which shares some similarities with the cosmological
‘‘big bang.’’ A metamaterial model of a metric signature

change event should be extremely interesting to observe.
Unlike usual phase transitions, in which the physical sys-
tem changes while the background metric is intact, the
signature change transition affects the underlying back-
ground metric experienced by the system. Therefore, sig-
nature change events constitute a new kind of phase
transition.
The equation of motion of a quantum scalar field resid-

ing on some space-time is described by the Klein-Gordon
equation [16]:

P̂ iP̂i’ ¼ m2’; (1)

where P̂i ¼ @=@xi is the momentum operator. For a mass-
less field in a ‘‘flat’’ (2þ 2) four-dimensional 2T space-
time, the Klein-Gordon equation can be written as�

@2

@x21
þ @2

@x22
� @2

@x23
� @2

@x24

�
’ ¼ 0 (2)

in the coordinate space, and as

ð�k21 � k22 þ k23 þ k24Þ’k ¼ 0 (3)

in the k space. To illustrate how dynamics described by
Eq. (2) can be mimicked in metamaterials, let us start with
a nondispersive and nonmagnetic uniaxial anisotropic ma-
terial with dielectric permittivities, "x ¼ "y ¼ "1 and "z ¼
"2. The wave equation in such a material can be written
[17] as

� @2 ~E

c2@t2
¼ "$�1 ~r� ~r� ~E; (4)

where "$�1 is the inverse dielectric permittivity tensor
calculated at the center frequency of the signal bandwidth.
Any electromagnetic field propagating in this material can
be expressed as a sum of the ‘‘ordinary’’ and ‘‘extraordi-
nary’’ contributions, each of these being a sum of an
arbitrary number of plane waves polarized in the ordinary

( ~E perpendicular to the optical axis) and extraordinary ( ~E
parallel to the plane defined by the k vector of the wave and
the optical axis) directions. Let us define our ‘‘scalar’’
extraordinary wave function as ’ ¼ Ez (so that the ordi-
nary portion of the electromagnetic field does not contrib-
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ute to ’). Equation (4) then yields the following form of
the wave equation:

@2’

c2@t2
¼ @2’

"1@z
2
þ 1

"2

�
@2’

@x2
þ @2’

@y2

�
: (5)

While in ordinary crystalline anisotropic media both "1
and "2 are positive, this is not necessarily the case in
metamaterials. In the indefinite metamaterials considered,
for example, in [18,19], "1 and "2 have opposite signs.
These metamaterials are typically composed of multilayer
metal-dielectric or metal wire array structures, as shown in
Fig. 1(a). Optical properties of such metamaterials are
quite unusual. For example, there is no usual diffraction
limit in an indefinite metamaterial [18–23]. In the absence

of dispersion, Eq. (5) in the case of "1 < 0 and "2 > 0
looks like the Klein-Gordon equation (2) for a massless
field in a flat (2þ 2) four-dimensional 2T space-time.
However, metamaterials generally show high dispersion,

which often cannot be neglected. In this case Eq. (4) is
replaced by

!2

c2
~D! ¼ ~r� ~r� ~E! and ~D! ¼ "$!

~E!; (6)

which results in the following wave equation for �!:

�!2

c2
’! ¼ @2’!

"1@z
2
þ 1

"2

�
@2’!

@x2
þ @2’!

@y2

�
; (7)

or equivalently in the k space

!2

c2
’!;k ¼ k2z

"1
’!;k þ

k2x þ k2y
"2

’!;k: (8)

Let us consider the case of "1 < 0 and "2 > 0 and assume
that this behavior holds in some frequency range. Here we
observe that the effective space-time signature as seen by
extraordinary light propagating inside the metamaterial has
different character depending on the frequency. At high
frequencies (above the plasma frequency of the metal), the
metamaterial exhibits ‘‘normal’’ Minkowski effective met-
ric with a (�;þ;þ;þ) signature, while at low frequencies
the metric signature changes to (�;�;þ;þ). After simple
coordinate transformation Eq. (8) can be rewritten as

ð�k2t � k2z þ k2x þ k2yÞ’!;k ¼ 0; (9)

which coincides with the Klein-Gordon equation for a (2þ
2) space-time in the k space [see Eq. (3)]. Alternatively, in
the case of "1 > 0 and "2 < 0, Eq. (8) can be rewritten as

ðk2t þ k2x þ k2y � k2zÞ’!;k ¼ 0: (10)

As a result, both at the small and the large frequencies the
effective metric looks like the Minkowski space-time.
However, at small frequencies the z coordinate assumes
the role of a timelike variable. Note that causality and the
form of Eqs. (9) and (10) place stringent limits on the
material losses and dispersion of hyperbolic metamateri-
als: a dispersionless and lossless hyperbolic metamaterial
would violate causality. On the other hand, such metama-
terials indeed enable experimental exploration of the met-
ric signature transitions [15] to and from the Minkowski
space-time. Unlike the infinite number of particles created
in an idealized theoretical signature change event [15],
metamaterial losses limit the number of particles created
during the real signature change transition. Nevertheless,
our calculations indicate that the number of created parti-
cles is still very large (see Fig. 2).
A composite metamaterial, which exhibits a metric sig-

nature phase transition as a function of temperature, can be
designed using materials which exhibit metal-dielectric
transitions. A numerical example of such a metamaterial
is presented in Fig. 1. It is making use of a pronounced
change in dielectric constant of gallium upon phase tran-

FIG. 1 (color online). (a) Schematic views of the ‘‘wired’’ and
‘‘layered’’ metamaterials. Panels (b) and (c) show calculated
Reð"Þ and Imð"Þ of the wired metamaterial made of silica glass
and gallium wires (Im"x;y � Im"z, not shown). This medium

demonstrates metric phase transition in the visible frequency
range when gallium wires are converted from the solid to liquid
state. The case of NGa ¼ 0:1 volume fraction of gallium has been
considered. The range of frequencies for which the effective
metric signature changes from the Minkowski (�;þ;þ;þ) to
the 2T physics (�;�;þ;þ) is shown by the dashed lines.
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sition from the crystalline semimetallic �-gallium phase to
the liquid phase, in which gallium behaves as a low-loss
free-electron metal. The melting point of gallium at the
atmospheric pressure is located at 29:8 �C [24], so the
‘‘metric signature phase transition’’ in such a metamaterial
is easy to observe. This transition may also be induced by
external femtosecond light pulses, as has been observed in
[25] for gallium films on silica substrates. The wired
metamaterial structure in the simulation is assumed to be
made of thin gallium wires distributed inside the silica
matrix, so that observations of Ref. [25] can be used. The
real and imaginary parts of " of liquid and solid gallium
were taken from [24,26], respectively. The Maxwell-
Garnett approximation has been used to calculate the real
and imaginary parts of "z and "x;y of the ‘‘wired’’ meta-

material for the liquid and solid states of the gallium wires
[Fig. 1(b) and 1(c)]. It has been validated in [19] in the case
of low volume fraction N of the metallic component of the
metamaterial. Therefore, the case of NGa ¼ 0:1 volume
fraction of gallium has been considered. This approxima-
tion can be further refined by taking into account dynami-
cal interaction between the wires [27]. Our simulations
indicate that the extraordinary photons propagating inside
the wired Ga-based metamaterial experience the metric
signature change from the Minkowski-like (�;þ;þ;þ)
to the 2T physics (�;�;þ;þ) upon melting of the Ga
wires. Moreover, the losses in the (�;�;þ;þ) regime
remain relatively low: at 1.8 eV the ratio of the real to
the imaginary part of "z is about Reð"zÞ=Imð"zÞ � 2, which
is translated into about a factor of 4 ratio between the real
and imaginary parts of the photon wave vector.
Propagation loss may be further improved by using a
gain medium such as the dye-doped silica [28].

‘‘Layered’’ Ga-based metamaterial having NGa ¼ 0:1
would also demonstrate a metric phase transition as a
function of temperature. Femtosecond light-induced phase
transition inside such a metamaterial (which according to
Ref. [25] occurs extremely fast) would look like a version
of the dynamical Casimir effect experiment [29,30], which
is predicted to produce a flash of light emission.
The ‘‘big flash’’ behavior is not limited to the artificial

metal-dielectric metamaterials only. Many dielectric crys-
tals, such as � quartz, have lattice vibration modes which
carry an electric dipole moment. The dipole moment cou-
ples the lattice vibrations to the radiation field in the crystal
to form the phonon-polariton modes [31]. As a result,
multiple reststrahlen bands are formed near the frequencies
of the dipole-active lattice vibration modes !n (where n is
the mode number) in which both "1 and "2 become metal-
like and negative. These bands are typically located in the
mid-IR region of the electromagnetic spectrum. Because of
crystal anisotropy, "1 and "2 change sign at slightly differ-
ent frequencies [32]. Thus, in the narrow frequency ranges
near the boundaries of the reststrahlen bands "1 and "2
have different signs. In these frequency ranges natural
crystals behave as indefinite metamaterials, and the ex-
traordinary light dispersion law is either

k2x þ k2y � k2z ¼ !2
n=c

2 (11)

or

k2z � k2x � k2y ¼ !2
n=c

2: (12)

The latter case corresponds formally to the free-particle
spectra in a (2þ 1)-dimensional Minkowski space-time, in
which the mass spectrum is given by the spectrum !n of
the lattice vibrations (Fig. 2, inset). It is interesting to note
that the liquid-solid phase transition in such a crystal
provides us with an example of a phase transition in which
a formal (2þ 1)-dimensional Minkowski space-time
emerges together with a discrete free particle spectrum.
The characteristic feature of this phase transition appears
to be a ‘‘big flash’’ due to the sudden emergence of the
infinities of the photonic density of states near the !n

frequencies. Unlike the usual finite blackbody photonic
density of states

dn

d!
¼ !2

2�2c3
; (13)

defined by the usual k2x þ k2y þ k2z ¼ !2
n=c

2 photon disper-

sion law in vacuum, the density of states of the extraordi-
nary photons near the !n frequencies diverges in the
lossless continuous hyperbolic medium limit:

dn

d!
� K3

max

12�2

��������
"2
"1

�
1

"1

d"1
d!

� 1

"2

d"2
d!

���������; (14)

where Kmax is the momentum cutoff [33]. Kmax is defined
by either metamaterial structure scale or by losses. As a
result of the suddenly emerging divergences in the pho-
tonic density of states near the !n frequencies, these states
are quickly populated during the liquid-solid phase tran-

FIG. 2 (color online). Photon energy dE=d! (normalized per
unit volume) emitted during the femtosecond light-induced
metric signature phase transition in the gallium-based metama-
terial from Fig. 1. Inset: Hyperbolic dispersion relation allowing
unbounded values of the wave vector due to which the photonic
density of states diverges.
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sition. This event can be considered as a simultaneous
emergence of the (2þ 1)-dimensional Minkowski space-
time and a very large number of particles (extraordinary
photons), which quickly populate the divergent density of
states, and hence the emergent (2þ 1) Minkowski space-
time itself. The number of photons created as a result of
such an event is defined by the Maxwell-Boltzmann dis-
tribution at the temperature T of the liquid-solid transition:
N � ðdn=d!Þ expð�@!n=kTÞ � K3

max expð�@!n=kTÞ.
Since for the reststrahlen bands @!n � kT, a large number
of photons are created. Intriguingly, flashes of light are
indeed observed during fast crystallization of many dielec-
tric materials, which exhibit phonon-polariton resonances.
This phenomenon has been known since the 18th century
as crystalloluminescence [34]. Unfortunately, these obser-
vations may only be treated as the ‘‘big flash’’ events if
similar flashes are observed in the mid-IR range, or some
mechanism of photon up-conversion will be confirmed.

On the other hand, in the case of @!n � kT, where!n is
the frequency within the hyperbolic region of the disper-
sion law, the number of photons emitted during the metric
signature change transition can be calculated via the dy-
namical Casimir effect. The total energy E of emitted
photons from a phase-changing volume V depends on the
photon dispersion laws !ðkÞ in both media [see Eq. (3) of
Ref. [30]]:

E

V
¼

Z d3 ~k

ð2�Þ3
�
1

2
@!1ðkÞ � 1

2
@!2ðkÞ

�
; (15)

where !1ðkÞ and !2ðkÞ are the photon dispersion relations
inside the respective media. Equation (15) is valid in the
‘‘sudden change’’ approximation, in which the dispersion
law is assumed to change instantaneously. The detailed
discussion of the validity of this approximation can be
found in Ref. [30]. Therefore, the number of photons per
frequency interval emitted during the transition can be
written as

dN

Vd!
¼ 1

2

�
dn1
d!

� dn2
d!

�
; (16)

where dni=d! are the photonic densities of states inside
the respective media. Since the photonic density of states
diverges in the hyperbolic regions of the photon dispersion
near the frequencies !n of the phonon-polariton reso-
nances, the number of photons emitted during the transi-
tion would also diverge near !n in the lossless continuous
medium limit, leading to the ‘‘big flash’’ behavior. Using
Eqs. (15) and (16) we can calculate the number of photons
emitted during the metric signature phase transition in the
gallium-based metamaterial presented in Fig. 1, assuming
that it is induced by a femtosecond light pulse [25], so that
the ‘‘sudden change’’ approximation is valid. Results of
our numerical calculations of the photon energy dE=d!
emitted during the metric signature transition in the
gallium-based metamaterial from Fig. 1 are presented in
Fig. 2. The metamaterial structure in these calculations is
assumed to be fine enough, so that the value of Kmax is

defined by metamaterial losses. Thus, a dedicated experi-
ment performed on an artificial or natural hyperbolic meta-
material exhibiting a metric signature phase transition is
possible, and would be an extremely interesting develop-
ment. Besides Ga-based metamaterial, conducting trans-
parent oxides (e.g., ITO, AZO, and similar) can be used as
the phase-changing component of the hyperbolic metama-
terial. These materials can be switched from dielectric to
metal phase either optically or electrically.
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