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Determining the Carrier-Envelope Phase of Intense Few-Cycle Laser Pulses
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The electromagnetic radiation emitted by an ultrarelativistic accelerated electron is extremely sensitive
to the precise shape of the field driving the electron. We show that the angular distribution of the photons
emitted by an electron via multiphoton Compton scattering off an intense (I > 10?° W /cm?), few-cycle

laser pulse provides a direct way of determining the carrier-envelope phase of the driving laser field. Our

calculations take into account exactly the laser field, include relativistic and quantum effects and are in
principle applicable to presently available and future foreseen ultrastrong laser facilities.
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The rapid development of ultrafast optics has been
allowing the investigation of physical processes at shorter
and shorter time scales. Time compression of laser pulses
to durations 7 below two laser cycles and even down to one
cycle has been demonstrated in the midinfrared [1] (7 =
39 fs at a central laser wavelength of A = 12 um), in the
near infrared [2] (7 = 4.3 fs at A = 1.55 um), in the
optical [3] (7 <4 fs at A = 0.7 um) and in the extreme
ultraviolet (XUV) domain [4] (7 = 80 as at A = 12 nm).
Laser-matter interaction in this “few-cycle” regime shows
features, which are qualitatively new with respect to the
more conventional ‘“many-cycle” regime: the response, for
example, of atoms and molecules becomes sensitive to the
precise temporal form of the electromagnetic field of the
laser and, in particular, to its carrier-envelope phase (CEP),
i. e., the phase difference between the carrier wave and the
envelope function (see the recent review [5] and the refer-
ences therein). Vice versa, the knowledge and the control
of the CEP of a laser pulse allows us in turn to control
physical properties such as, for example, atomic ionization
or above-threshold ionization (ATI). So far, few-cycle
pulses have been produced with intensities below the rela-
tivistic threshold, corresponding in the optical domain to
laser intensities / of the order of 10'® W/cm?.
Experimental determination of the CEP for few-cycle
pulses of intensities up to 7 = 10%-10" W/cm? has
been achieved by a stereo ATI measurement technique
proposed in [6], with an accuracy of about 7/300 [7].
Other methods employed to measure the CEP are atto-
second streaking [8] and THz-spectroscopy [9]. However,
these methods are not applicable for laser pulses of inten-
sities above I = 10'® W/cm? when relativistic effects be-
come increasingly important.

The generation of intense laser pulses is intimately con-
nected with temporal compression. Not only because
tighter temporal compression implies, of course, larger
pulse intensities at a given laser energy and waist size,
but also because available larger intensities allow potential
discovery of new physical processes at shorter time scales,
opening the possibility of exploiting them to generate even
shorter pulses. In the present context a laser pulse charac-
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terized by a peak electric field £ and by a carrier angular
frequency w, is indicated as ‘“‘intense,” if the parameter
& = |e|€/mw is much larger than unity, where e < 0 is the
electron’s charge, m its mass and units with 7 = ¢ = 1 are
employed, as throughout this work. An electron in such an
intense laser field is ultrarelativistic, i. e., its Lorentz factor
is much larger than unity [10]. In [11] the possibility of
generating single-cycle optical laser pulses with peak in-
tensities larger than 10%° W/cm?, corresponding to & >
10, is investigated theoretically. Also, in [12] the produc-
tion of few-cycle, intense XUV bursts is envisaged by
employing relativistic harmonic generation by a planar
target. Moreover, the Petawatt Field Synthesizer laser sys-
tem under construction in Garching (Germany) aims at
optical laser intensities of the order of 10*> W/cm? (¢ =~
100) by compressing an energy of 5 J to only 5 fs, corre-
sponding to less than two laser cycles [13]. Finally, at the
Extreme Light Infrastructure (ELI) facility [14], unprece-
dented laser intensities of the order of 102-10%% W/cm?
are envisaged, with pulse durations of about 10 fs.
Therefore it is highly desirable to have a procedure to
determine the CEP of few-cycle laser pulses also when
their intensity largely exceeds the relativistic threshold.
In the present Letter we provide a method of determin-
ing in principle the CEP of an intense (I > 10*° W/cm?)
few-cycle laser pulse. The method exploits precisely the
specific features of the electromagnetic spectrum emitted
by an ultrarelativistic electron, in particular, that it emits
radiation almost exclusively in a narrow cone of aperture
m/e, < 1 along its instantaneous velocity, with €, being
the electron’s energy at the emission time [10]. Since
intense laser pulses are of interest here, the laser field is
taken into account exactly. Moreover, at such high laser
intensities and electron energies, quantum effects may play
in general a crucial role and they are also included by
performing the calculations in the framework of quantum
electrodynamics in the Furry picture [15]. This requires the
exact solutions of the Dirac equation in the presence of the
external field as initial and final electron quantum states.
Therefore, we restrict the quantum case to scenarios where
the external field can be approximated by a plane wave and
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employ electron Volkov states [15]. If quantum effects are
negligible our method can be generalized to hold in prin-
ciple for an arbitrary external field and we will consider the
case of a focused Gaussian beam. We show that the angular
distribution of the radiation emitted by the electron is
particularly sensitive to the CEP of the driving pulse and
that a theoretical accuracy of about 7/10 can in principle
be achieved. We also derive an analytical formula connect-
ing the angular aperture of the spectrum with the value of
the CEP.

We start by describing the few-cycle laser beam as a
pulsed plane wave linearly polarized along the x direction
and propagating along the positive z direction. The ampli-
tude and the central angular frequency of the pulse are
indicated as £ and w, respectively. Then, the electric field
E(¢) of the wave depends only on the phase ¢ = k*x,, =
w(t — z), with k* = 0(1,0,0,1) and can be written as
E(P) = Ehe(P)x, with ye(ph) being an adimensional
function. In order to avoid the appearance of unphysical
static (dc) components in the electric field [16], we choose
the electromagnetic vector potential as A(¢) =
Ay 4(h)x, where A = -/ w,

b () = {girﬁ(%) in(+ o) 6 €0.2NT] )

elsewhere,

and £(¢p) = —wdA(p)/dd. Here N is the pulse duration
in units of the laser period 27/ w, ¢, is the CEP of the
pulse and the sin* envelope ensures that the electric field
and its derivative vanish at ¢ = 0 and ¢ = 2N7. As we
have already mentioned, the interaction of the electron and
the external plane-wave field is taken into account exactly
in the calculations by employing Volkov states as quantum
in- and out-states of the electron and by working in the
Furry picture [15]. The interaction between the electron
and the quantized photon field instead scales with the fine-
structure constant agpp = e? = 1/137 and in the parame-
ter regime of our interest here it can be accounted for
perturbatively up to first order. In this approximation the
electromagnetic spectrum emitted by the laser-driven elec-
tron can be calculated from the probability that the electron
emits one photon. We assume that the incoming electron
has spin s and is counterpropagating with the laser pulse;
therefore, its initial four-momentum is p* = (¢, 0,0, —p),
with € = 4/m? + p>. The outgoing electron instead has
spin s’ and four-momentum p'* = (€, p’), with € =
vm? + |p'|>. Finally, the emitted photon has four-
momentum k'* = (', k'), with @’ = |k'| and its polar-
ization states are described by the four-vectors s/r‘,‘ s
with ' € {1, 2}. Then, the transition matrix element Sy;
of our process can be cast into the convenient form
S; = Qms(p. + K. — p)2mPs(p!, + K\ — p )My,
where for a general four-momentum g* = (¢°, ¢) the no-
tation g = ¢° — ¢, and ¢, = (q,, q,) has been intro-
duced. The precise expression of the amplitude My; is
rather involved and it is not necessary to report it here.

We only note that it can be written as My; = Z§=0 cifis

where c; are coefficients weakly dependent on the physical

parameters of the problem and where the three functions f;

with f; = [2 dny’y (n)e’ S5 an e aG+BUS 47 o
tain all the relevant dynamical information of the process.
Here we have introduced the important parameters o =
—mék,/(kp'), B =m?¢*k_/2p_(kp') and y=
w'(e — pcos?)/(kp’), with (kp') =k, p™* = w(e —
py) = wle + p — w'(1 + cos?)] and 7 — ¥ and ¢ being
the spherical angular coordinates of the emitted photon,
assuming the positive z axis as the polar axis. It can be
shown that the function f; can be written as f, =
—(Bf, + af,)/vy. Starting from the above quantity M,
one can calculate the emitted energy spectrum dE/dQdw’
(average energy emitted between w’ and o’ + dw’, in the
solid angle dQ) = sinddddyp) as

dE e )
dQdw' 167 Wzr,le i @
It can be seen that, as it must be, the above expression of
the emitted energy spectrum reduces to its classical coun-
terpart when the energy of the emitted photon is much
smaller than the initial electron energy, i. e., in the limit
o' < €. In turn, this occurs if the parameter y = (e +
p)éw/m? is much smaller than unity [17]. From a physical
point of view, the parameter y is the laser’s electric field
amplitude in units of the quantum electrodynamics critical
field E,., = m?/|e| in the rest frame of the incoming elec-
tron. Effects of the laser’s pulse shape on classical multi-
photon Thomson scattering (y << 1) at laser intensities
around the relativistic threshold have been studied in
[18-20]. CEP effects have also been investigated in
Schwinger electron-positron pair production in time-
dependent electric fields [21], but, for pair production to
occur at all in that case, laser intensities have been consid-
ered larger than 10?7 W/cm?.

Now, as we have mentioned, we are interested in the
ultrarelativistic regime in which & > 1. Also, we will
consider situations in which m¢ ~ €, where the interplay
between the initial electron energy and the laser intensity
produces rich dynamics of the electron in the laser field. In
this parameter regime, if y << 1 (classical case) the elec-
tron mainly emits frequencies of the order of w' ~ w&>,
while if y = 1 (quantum case) the electron mainly emits in
the energy range @’ ~ €. In both cases, one can see that the
three parameters «, 3, and 7y appearing in the exponential
in the functions f; are all of the same order and very large.
This implies that the functions f; can be evaluated by
applying the saddle-point method to the integrals in 7. In
the classical limit, this circumstance reflects the following
physical feature: the spectrum emitted by an ultrarelativ-
istic electron along a direction (1}, ¢) is mainly determined
by those parts of the electron trajectory where its velocity
points along (9, ¢), within a small angle of the order of
m/e, < 1, with €, being the electron’s energy at the
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emission time, and the other parts of the trajectory give an
exponentially small contribution [10]. This is the physical
reason why the energy spectrum emitted by an ultrarela-
tivistic electron provides detailed information about the
electron trajectory (in the classical regime) and, in turn,
about the precise form of the driving external field. As we
will show below, this last feature remains true also in the
quantum regime. In fact, from the general theory of the
saddle-point method it follows in our case that in the region
of parameters in which the saddle points have a large
imaginary part, the functions f; are exponentially smaller
than in those regions in which the saddle points are almost
real [17]. If we fix the initial energy of the electron, the
laser intensity and the energy of the emitted photon, the
functions f; depend only on the photon emission angles ¢
and ¢. We have shown that the region where the saddle
points are almost real (their imaginary part scales as
1/€ < 1) corresponds in the classical limit exactly to the
angular region in ¢ and ¢, which is spanned by the
electron velocity when it moves inside the laser pulse.
This is fully consistent with the mentioned classical cir-
cumstance that an ultrarelativistic electron emits almost
only along its velocity. By consequently imposing that the
saddle points 7, of the phase in f; are real, the following
condition must be fulfilled:

€+ v
lpﬂ,min = mgp tan(z) cosp = {pﬂ,maxr (3)

where ¢ 4 min (¥ 4.max) denotes the minimum (maximum)

value of the function i 4 () = g’dd)’gbg(d)’). The val-
ues of ¢ 4 min and ¥ 4 .« depend on the CEP ¢ and the
above equation yields the bounding angles for the emission
cone as functions of the CEP. Note that, since we work in
the ultrarelativistic regime € >> m, then p = € and Eq. (3)
provides universal conditions depending (apart from the
shape of the laser field, of course) only on the ratio €/mé.

The above considerations equally apply in the classical
and in the quantum regime and the spectrum (2) in the limit
x < 1 goes to the classical expression derived by first
solving the Lorentz equation and then plugging the result-
ing trajectory into the Liénard-Wiechert potentials (see
Eq. (66.9) in [10]). However, the classical formulas hold
in principle for an arbitrary external field. Moreover, it can
be shown that the above Eq. (3) can also be employed for
an external potential of the form A(¢;x, y, z)=
A a(p;x, y, 2)% slowly varying with respect to x, y
and z, by simply substituting the function ¢ 4 () with
¥ a(¢;x,y,2). In Fig. 1 we show the dependence of the
angular emission region in ¢ as a function of the CEP,
obtained from Eq. (3) in the two cases mé = 2€ [Fig. 1(a)]
and m¢é = €/7.5 [Fig. 1(b)]. In both cases N =2. In
view of the first numerical example worked out below, in
Fig. 1(a) we consider a Gaussian beam with carrier wave-
length A = 1.2 um (w = 1 eV), spotradius w = 2 pum at
zero order in the ratio w/z, < 1, with z, = ww?/2 being
the laser’s Rayleigh length [22] (we will see that our

formula (3) with  4(¢) — ¥ 4(d;x,y,z) works well
also at such tight focusing). In Fig. 1(b) the case of an
external plane wave is considered. The radiation is con-
fined around the azimuthal angles ¢ =0 and ¢ = 7
within a small aperture angle of roughly Ag ~
m/e < 1; therefore, we consider only the directions ex-
actly at ¢ = 0 and at ¢ = 7, corresponding to ¥ = 0 and
¥ <0 in Fig. 1, respectively. The figure shows a one-to-
one dependence of the emission range AY = U6 — Fmin
on the CEP ¢ [V, and ¥, are the bounding angles
obtained from Eq. (3)]. From Eq. (3) one also sees that the
most convenient range of parameters in terms of accuracy
in the determination of the CEP is at m& ~ € (if mé > e,
then the electron emits almost exclusively into a cone
along the laser propagation direction with an angular ap-
erture of the order of 1/¢ independently of the CEP).

In order to show quantitatively the features of our
method we consider below two examples. In the first
example, we aim to investigate a rather realistic situation
in which the external field is modeled as a focused
Gaussian beam also including longitudinal field compo-
nents up to first order in w/z, [22]. By recalling the laser’s
parameters envisaged at the Petawatt Field Synthesizer
[13], we set w =1 eV, N =2 (corresponding to 7 =
8fs), w=2um and &=100 (I =102 W/cm?).
Moreover, it can be seen that for the electron densities of
beams obtained via laser wakefield acceleration [23], the
relevant (high-energy) part of the spectrum results essen-
tially from incoherent emission. We consider an electron
beam with a three-dimensional Gaussian spatial distribu-
tion with waists w,, =w,, =5 um and w,, =8 um
and with a Gaussian energy distribution with central en-
ergy € = 26 MeV [such that m¢ = 2e like in Fig. 1(a)]
and waist w,. such that w,./e€ = 2% [23]. Therefore,
since y =2 X 1072, we can calculate the spectrum by
employing the classical formula valid for a single electron
[10] and then averaging it over the electron distribution (in
the numerical example we have considered a beam with
N, = 300 electrons and ensured that our results are not
significantly altered by increasing N,). In this example [see
Figs. 2(a) and 2(b)] we aim to show the sensitivity of our
method and we show two energy spectra for two different
CEPs. The plots show the very good agreement between
the analytical predictions and the numerical results.

90
) 45 a) [ 5 b) Fmax
I o 0
—45 -5
—90 Oumin Gimin
-n/2  -n/4 0 n/4 w2 -n/2 -n/4 0 /4 /2

@ [rad] @ [rad]

FIG. 1. Angular emission range as a function of the CEP
obtained from Eq. (3) for a two-cycle pulse with m¢ = 2e
[part (a)] and mé& = €/7.5 [part (b)]. In part (a) the external
field is a Gaussian beam with carrier angular frequency w =
1 eV and spot radius w = 2 um. In part (b) the external field is a
plane wave.
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FIG. 2 (color online). Energy emission spectra dE/dQdw’ in
st~! via Eq. (66.9) in [10] [parts (a) and (b)] and via Eq. (2)
[parts (c) and (d)] for the two sets of parameters described in the
text. In parts (a) and (b) quantum effects are negligible and it is
¢o = —m/10 [part (a)] and ¢, = —/5 [part (b)]. In parts (c)
and (d) quantum effects are important and it is ¢», = O [part (c)]
and ¢y = m/4 [part (d)] (the almost vertical red line indicates
here the quantum cutoff frequency ), = (e + p)/(1 + cos?)).
The horizontal white lines indicate the boundary of the emission
range determined analytically from Eq. (3) generalized to the
case of a Gaussian beam for parts (a) and (b).

Moreover, it is evident that the angular aperture of the
emission region is very sensitive to the CEP: a small
change |[A¢y| = 7/10 in the CEP changes the minimum
(maximum) emission angle by about 3° (5°). In Figs. 2(c)
and 2(d) we consider another example, in which an ultra-
strong attosecond XUV pulse, as those theoretically envis-
aged in [12] is employed (w = 50 eV, 7 = 160 as and
& = 20, which can be obtained if the field is focused to
about w = 100 nm) together with an electron with initial
energy of 75 MeV [corresponding to 7.5m¢ as in Fig. 1(b)].
In this case, y = 0.6 and quantum effects are already
important. Since here A =25 nm and w = 100 nm, the
quantum results valid in the plane-wave approximation
should apply with sufficient accuracy. With these parame-
ters the method turns out to be less precise as compared to
the above example and a change in the CEP of about 77/4
produces a change in the angular aperture of a few degrees.
In this case we observe an excellent agreement between the
numerical and the analytical values of ¥, and ¥,,.
Moreover, the almost vertical red line shows the position
of the cutoff emission frequency w}, determined from the
analytical formula w}, = (€ + p)/(1 + cos?) [17]. This is
a typical quantum effect: due to energy-momentum con-
servation, the electron cannot emit a photon at an angle
with energy larger than or equal to w,. Therefore, also the
quantum cutoff frequency w), is affected by the CEP,
through the emission aperture A<}. Finally, we note that
the bright features of the spectra in Figs. 2(c) and 2(d)
along the direction ¥ = 0 can be explained classically: in a
relatively large part of the trajectory the electron velocity is
observed to point just along that direction.

Experimental uncertainties in the laser intensity may al-
ter our results. The intensity of a strong optical laser beam
can be measured nowadays with a relative uncertainty
AI/I of about 10% [24]. If one includes a correspond-
ing uncertainty A¢ in ¢ in Eq. (3), one obtains that
the induced uncertainty Adyin/max 10 Uin/max 18
given by A7~9min/max = 4m€| wﬂl,min/maxlAf/M'Ez +
m*E | A min/max]?). In the example in Figs. 2(a)
and 2(b) we obtain A,/ max = 2.8°. In the second ex-
ample, it is difficult to estimate the value of AI/I.
However, since €~ 7.5m¢ then Ay max =
(A€/€)/7.5 and even an uncertainty of about 50% in the
intensity is acceptable. Thus in both cases we can conclude
that these uncertainties do not conceal the effect of the
CEP. By repeating the simulation with a different temporal
pulse shape (a Gaussian one) we have observed alterations
to the spectra, much smaller than those due to the uncer-
tainty in the laser intensity. We finally note that for pulses
comprising more than three laser cycles the discussed
effect is too small to be significant. On the other hand,
the CEP effect is even larger than here for pulses including
only one laser cycle.
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