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We present some new results relating to properties of completely coherent optical fields. Our analysis

elucidates the relationship between the theories of such fields in the space-time and in the space-frequency

domains. We also show that the concept of cross-spectral purity, introduced by L. Mandel many years ago,

plays an important role in clarifying this relationship.
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The invention of the laser, almost exactly half a century
ago, has made it possible to generate highly coherent light
beams. As is well known, such beams have found numer-
ous applications in many fields, especially, in physics,
chemistry, medicine and biology. The invention also trig-
gered many studies of coherence properties of light.

The concepts of completely coherent light and of mono-
chromaticity have often been incorrectly regarded as syn-
onymous. This misconception persists, even though
differences between them have been noted in several pub-
lications (see, for example, [1,2]). The electromagnetic
field associated with a monochromatic light oscillates in
a deterministic way with time. However, no optical field
found in nature or produced in a laboratory is determinis-
tic; it always undergoes some random fluctuations. There
are many causes for the randomness. For light generated by
thermal sources, it is mainly due to the fact that the optical
field has contributions from many atoms, which radiate
essentially independently of each other. Even in beams
generated by good-quality lasers, random fluctuations are
present, because contributions from spontaneous emission
cannot be eliminated. It is well known that over sufficiently
long time interval, the phase of the output of even a well
stabilized laser undergoes random fluctuations (see, for
example, [3], Sec. VI.7).

The distinction between complete coherence and strict
monochromaticity is not just of academic interest. Very
recently, practical implications of this difference have
began to be appreciated; that led, for example, to the
theoretical solution of a classic old problem in crystallog-
raphy, namely, showing how the phases of x-ray beams
diffracted by crystalline media may be determined [4,5].
The appreciation of this distinction appears to have con-
siderable potential for developing new phase measurement
techniques (see, for example, Ref. [6]).

It should be clear from these remarks that the concept of
complete coherence is an important one, and evidently
should be investigated more carefully than has been done
up to now. This Letter is a modest contribution towards
understanding of the properties of spatially completely

coherent light. We investigate the implications of complete
spatial coherence of an optical field on the frequency
components present in its spectrum. It will become clear
shortly that our analysis clarifies an important aspect of the
relationship between the space-time and the space-
frequency formulations of coherence theory. It also reveals
that cross-spectrally pure light (see [7,8]; also, [9],
Sec. 4.5) has some special properties which are relevant
for understanding of the relationship.
The foundations of the coherence theory of light was

laid down by Zernike in a classic paper [10] published in
1938. Zernike defined the degree of coherence of light at
two points in a wave field as the maximum visibility of
interference fringes formed by superposing light arriving
from the two points. He also showed that the maximum
value of the fringe visibility is equal to the modulus of the
normalized cross-correlation function of the optical fields
at the two points, considered at the same instant of time.
Since Zernike’s formulation did not take into account a
possible time difference between the interfering beams, it
could not explain some rather important coherence prop-
erties of light. In 1955, Zernike’s definition of coherence
was generalized by including time difference between the
interfering beams and it was shown that the corresponding
correlation functions satisfy rigorously certain propagation
laws [11]. This formulation is known as the space-time
formulation of the theory of optical coherence. According
to this formulation, the randomly fluctuating field, at a
point P with position r, at a time t, may be represented
by a statistical ensemble fVðr; tÞg of realizations, which for
simplicity we assume to be scalar (see, for example, [12],
Sec. 2.1). The second-order correlation properties of such a
field in the space-time domain, at a pair of points Q1ðr1Þ,
Q2ðr2Þ, may be characterized by the so-called mutual
coherence function �ðr1; r2; �Þ given by (see, for example,
[12], Sec. 3.1)

�ðr1; r2; �Þ � hV�ðr1; tÞVðr2; tþ �Þi: (1)

In this expression the asterisk denotes the complex con-
jugate and the angular brackets denote ensemble average.

PRL 105, 063901 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending

6 AUGUST 2010

0031-9007=10=105(6)=063901(4) 063901-1 � 2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.105.063901


We assume that the field is statistically stationary, at least
in the wide sense ([9], Sec. 2.2); consequently the expres-
sion on the right-hand side of Eq. (1) is independent of t,
but depends on �. The ‘‘space-time’’ degree of coherence
�ðr1; r2; �Þ at a pair of points is defined by the expression
([11]; see also, [12], Sec. 3.1)

�ðr1; r2; �Þ � �ðr1; r2; �Þffiffiffiffiffiffiffiffiffiffi
Iðr1Þ

p ffiffiffiffiffiffiffiffiffiffi
Iðr2Þ

p ; (2)

where IðrÞ � �ðr; r; 0Þ represents the (average) intensity at
the point PðrÞ. It can be shown that 0 � j�ðr1; r2; �Þj � 1.
When j�ðr1; r2; �Þj ¼ 1, the field is said to be spatially
completely coherent at the pair of points Q1ðr1Þ and
Q2ðr2Þ. The other extreme case, �ðr1; r2; �Þ ¼ 0, repre-
sents complete spatial incoherence of the field at the two
points.

The physical significance of the degree of coherence of
light at two points can be understood from the analysis of
Young’s two-pinhole experiment. Suppose that a light
beam is incident from the half-space z < 0 onto an opaque
screen A, placed in the plane z ¼ 0, containing two pin-
holes at Q1ðr1Þ and Q2ðr2Þ (see Fig. 1). For the sake of
simplicity, we assume that the beam is incident normally
on the screen A. In general, interference fringes will be
formed on a screen B, placed in a plane z ¼ z0 > 0, some
distance behind the screen A (see Fig. 1). We assume that
the contributions to the averaged intensity at the point PðrÞ
on the screen B from light emerging from each of the two
pinholes are equal. One can readily show that the average
intensity IðrÞ at the point PðrÞ is then given by the expres-
sion [see, for example, [12], Sec. 3.1, Eq. (16)]

IðrÞ ¼ 2Ið1ÞðrÞf1þ j�ðr1; r2; �Þj cos½�ðr1; r2; �Þ�g; (3)

where Ið1ÞðrÞ is the intensity contribution at PðrÞ from each
of the two pinholes, �ðr1; r2; �Þ ¼ Phasef�ðr1; r2; �Þg, and
� ¼ ðR2 � R1Þ=c, c being the speed of light in free space.
One can readily show from Eq. (3) that the visibility V of
the fringes at the point PðrÞ is equal to the modulus
j�ðr1; r2; �Þj of the spatial degree of coherence of light at
the pair of points Q1ðr1Þ and Q2ðr2Þ (see Fig. 1) with � ¼
ðR2 � R1Þ=c [[12], Sec. 3.1, Eq. (19)], i.e., that

V � Imax � Imin

Imax þ Imin

¼ j�ðr1; r2; �Þj; 0 � V � 1: (4)

It is evident that the more coherent the field is at the pair of
pointsQ1 andQ2, the greater will be the value of the fringe
visibility. The phase of the degree of coherence may also
be determined from such experiment (see, for example, [9],
p-167).
Let us now consider an optical field which is spatially

completely coherent at the pair of points Q1ðr1Þ and
Q2ðr2Þ, for a particular value �0 of the time delay �, i.e.,
that

j�ðr1; r2; �0Þj ¼ 1: (5)

It has been shown, not long ago [13–15], that in this case
the fluctuating fields at the points Q1ðr1Þ and Q2ðr2Þ are
statistically similar, in the sense that

Vðr2; tþ �0Þ ¼ A12Vðr1; tÞ; (6)

where A12 is a time independent (generally complex) num-
ber. A12 is a measurable quantity, whose modulus and
phase are given by the expressions [13]

jA12j ¼
ffiffiffiffiffiffiffiffiffiffi
Iðr2Þ
Iðr1Þ

s
; (7a)

PhasefA12g ¼ Phasef�ðr1; r2; �0Þg: (7b)

The statistical similarity relation (6) can also be expressed
in the form

Vðr2; tÞ ¼ A12Vðr1; t� �0Þ: (8)

On using Eqs. (1), (6), and (8), the mutual coherence
function of such a field may be expressed in the forms

�ðr1; r2; �Þ ¼ A12�ðr1; r1; �� �0Þ ¼ �ðr2; r2; �� �0Þ
A�
12

:

(9)

There is an alternative formulation of coherence theory
known as the space-frequency formulation (see, for ex-
ample, [12], Ch. 4), which turned out to be rather useful.
It led to the discoveries and understanding of several
physical phenomena, such as correlation-induced spectral
changes [16] and changes in the polarization properties of
light on propagation [17]. Recent studies have also re-
vealed a great usefulness of this theory in connection
with determining structures of objects by inverse scattering
technique (see, for example, Refs. [4,5,18]). However the
relationship between the space-frequency formulation and
the older space-time formulation has so far not been sys-
tematically investigated [19].
In the space-frequency formulation, a statistical station-

ary field is represented, at each frequency !, by the cross-
spectral density functionWðr1; r2; !Þ, to be abbreviated by
CSDF, which is the Fourier transform of the mutual coher-
ence function:FIG. 1. Illustrating the notations.
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Wðr1; r2; !Þ � 1

2�

Z 1

�1
�ðr1; r2; �Þ exp½i!��d�: (10)

Wðr1; r2; !Þ may be shown to be also a correlation func-
tion, i.e., that it can be represented in the form

Wðr1; r2;!Þ ¼ hU�ðr1;!ÞUðr2;!Þi!; (11)

where Uðr;!Þ is a typical member of a suitably con-
structed ensemble of monochromatic realizations, all of
frequency ! ([12], Sec. 4.1). The subscript ! on the
angular bracket in Eq. (11) indicates that the average is
taken over that ensemble. One may again consider a
Young’s two-pinhole experiment (Fig. 1), but restricting
one’s attention to only one frequency component ! of the
light [20]. We assume that the contributions to the spectral
density (intensity at frequency !) at the point PðrÞ from
each of the pinholes are the same. The distribution of the
spectral density Sðr;!Þ � Wðr; r;!Þ on the screen B is
given by the expression ([12], Sec. 4.2)

Sðr;!Þ ¼ Sð1Þðr;!Þf1þ j�ðr1; r2;!Þj
� cos½�ðr1; r2;!Þ � ��g; (12)

where Sð1Þðr;!Þ is the contribution from either of the two
pinholes, � ¼ !ðR2 � R1Þ=c,

�ðr1; r2;!Þ � Wðr1; r2;!Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sðr1; !Þp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Sðr2; !Þp (13)

is the spectral degree of coherence and �ðr1; r2;!Þ is the
phase of �ðr1; r2;!Þ. The formula (12) is known as the
spectral intensity law. By analogy with the space-time
formulation, one can readily show that j�ðr1; r2;!Þj is
equal to the fringe visibility associated with the frequency
component !, in the experiment shown in Fig. 1. It should
be noted that in this case, unlike in the case of the space-
time formulation, the fringe visibility is constant over the
screen B. When j�ðr1; r2;!Þj ¼ 1, the field at the two
pointsQ1ðr1Þ andQ2ðr2Þ is said to be spectrally completely
coherent at the frequency!. If�ðr1; r2;!Þ ¼ 0, the field is
said to be spectrally completely incoherent at the two
points, at that frequency.

We will now investigate the consequence of Eq. (9) in
the space-frequency formulation. From Eqs. (9) and (10), it
can readily be shown that the CSDF of such a field at the
pair of points Q1ðr1Þ and Q2ðr2Þ, at every frequency !, is
given by expressions

Wðr1; r2;!Þ ¼ exp½i!�0�A12Sðr1;!Þ

¼ exp½i!�0�Sðr2;!Þ
A�
12

: (14)

This CSDF may be expressed in the form

Wðr1; r2;!Þ ¼ exp½i!�0�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sðr1;!Þ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sðr2;!Þ

q �
A12

A�
12

�
1=2

:

(15)

From Eqs. (13) and (14) [or (15)] one can readily show
that, under these circumstances,

j�ðr1; r2;!Þj ¼ 1; (16)

at every frequency ! present in the spectrum of the light,
i.e., the field is spectrally completely coherent at each
frequency, at the pair of points Q1ðr1Þ and Q2ðr2Þ. We
have thus established the following theorem:
Theorem.—If a statistically stationary optical field is

spatially completely coherent at a pair of points, for a
particular value �0 of the parameter �, in the space-time
formulation, then at that pair of points it is also spectrally
completely coherent at every frequency ! present in the
spectrum of the field.
The converse of this theorem is, however, not true in

general; i.e., even if every frequency component of an
optical field is spectrally completely coherent at a pair of
points, the field may not be spatially coherent at that pair of
points in the space-time formulation for any value of �, as
wewill now show. To prove this assertion let us consider an
optical field which is spectrally completely coherent
(j�ðr1; r2;!Þj ¼ 1), at a pair of points Q1ðr1Þ and
Q2ðr2Þ, at each frequency ! present in its spectrum.
Using Eq. (13), one has, in this case,

Wðr1; r2;!Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sðr1;!Þ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sðr2;!Þ

q
exp½i�ðr1; r2;!Þ�;

(17)

where�ðr1; r2;!Þ is the argument (phase) of the unimodu-
lar spectral degree of coherence�ðr1; r2;!Þ. On taking the
Fourier transform of Eq. (17) and on using Eq. (2), one
readily finds that

�ðr1; r2; �Þ ¼
R1
0 ½Sðr1;!ÞSðr2;!Þ�1=2ei�ðr1;r2;!Þe�i!�d!

½R1
0 Sðr1;!Þd! R1

0 Sðr2;!Þd!�1=2 :

(18)

Using the Cauchy-Schwarz inequality, one can readily
show from this formula that, in general, j�ðr1; r2; �Þj �
1. This implies that, even if each frequency component of
an optical field produces fringes of unit visibility in an
Young’s interference experiment [21], there may not be a
value �0 of the parameter � for which j�ðr1; r2; �0Þj ¼ 1.
However, we will now show that in the special case when
the field is cross-spectrally pure the converse of the theo-
rem holds.
We again consider a Young’s two-pinhole experiment

(Fig. 1). The light at the two pinholes is said to be cross-
spectrally pure (see [7,8]; also, [9], Sec. 4.5), if (i) the
spectral densities of the light at the two pinholes are
proportional to each other at all frequencies [Eq. (19a)
below] and if (ii) there exists a region around some point
P0ðr0Þ in the plane of observation B where the spectral
distribution of the light is proportional to the spectral
distribution of light at the pinholes, at all frequencies
[Eq. (19b) below], i.e., if the following relations hold for
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all frequencies :

Sðr2;!Þ ¼ C12Sðr1;!Þ; (19a)

Sðr0;!Þ ¼ DSðr1;!Þ; (19b)

where C12 and D are positive quantities that are indepen-
dent of !. In such a case, one can show [see, [9], Sec. 4.5,
Eq. (4.5–7)] that the spectral degree of coherence may be
expressed in the form

�ðr1; r2;!Þ ¼ Fðr1; r2; �0Þ exp½i!�0�; (20)

where Fðr1; r2; �0Þ is independent of!. In the present case,
since j�ðr1; r2;!Þj ¼ 1, Eq. (20) gives

�ðr1; r2;!Þ ¼ exp½ic ðr1; r2; �0Þ� exp½i!�0�; (21)

where c ðr1; r2; �0Þ is the argument (phase) of Fðr1; r2; �0Þ.
Using Eqs. (13), (19a), and (21), one finds at once that

Wðr1; r2;!Þ ¼ ffiffiffiffiffiffiffiffi
C12

p
Sðr1;!Þ exp½ic ðr1; r2; �0Þ�

� exp½i!�0�: (22)

It is interesting to note that this form of the CSDF is
equivalent to that given by Eq. (14). By taking Fourier
transform of Eq. (22) one obtains the following expression
for the mutual coherence function :

�ðr1; r2; �Þ ¼
ffiffiffiffiffiffiffiffi
C12

p
exp½ic ðr1; r2; �0Þ��ðr1; r1; �� �0Þ:

(23)

On using Eqs. (2) and (23) and setting � ¼ �0, it follows at
once that for such a field j�ðr1; r2; �0Þj ¼ 1. Thus we have
shown that if the light, at the two pinholes, is cross-
spectrally pure, the converse of the theorem, discussed
earlier, holds.

The main results which we have established in this
Letter may be summarized by the following statements:
(i) If an optical field is spatially completely coherent at a
pair of points for a value �0 of the parameter �, in the
space-time formulation, then in the space-frequency for-
mulation, it is spectrally completely coherent at that pair of
points, at every frequency present in its spectrum. (ii) Even
if every frequency component present in an optical field is
spectrally completely coherent at a pair of points, the field
itself may not be completely coherent in the space-time
formulation for any value �. However, if the light is cross-
spectrally pure at that pair of points, it will be spatially
coherent for some value � ¼ �0 in the space-time
formulation.
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