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In a previous paper we observed that (classical) tree-level gauge-theory amplitudes can be rearranged to

display a duality between color and kinematics. Once this is imposed, gravity amplitudes are obtained

using two copies of gauge-theory diagram numerators. Here we conjecture that this duality persists to all

quantum loop orders and can thus be used to obtain multiloop gravity amplitudes easily from gauge-

theory ones. As a nontrivial test, we show that the three-loop four-point amplitude ofN ¼ 4 super-Yang-

Mills theory can be arranged into a form satisfying the duality, and by taking double copies of the diagram

numerators we obtain the corresponding amplitude of N ¼ 8 supergravity. We also remark on a

nonsupersymmetric two-loop test based on pure Yang-Mills theory resulting in gravity coupled to an

antisymmetric tensor and dilaton.

DOI: 10.1103/PhysRevLett.105.061602 PACS numbers: 11.15.Bt, 04.65.+e, 11.25.Db, 12.60.Jv

Although gauge and gravity theories have rather differ-
ent physical behaviors we know that they are intimately
linked. The celebrated AdS-CFT correspondence [1] is the
most striking such example, linking maximally supersym-
metric gauge theory to supergravity in AdS space. We also
know that at weak coupling the tree-level (classical) scat-
tering amplitudes of gauge and gravity theories are deeply
intertwined because of the Kawai, Lewellen, and Tye
(KLT) relations [2].

Recent years have seen a renaissance in the study of
scattering amplitudes driven in part by the resurgence of
collider physics with the recent start up of the Large
Hadron Collider at CERN and by the realization that
scattering amplitudes have far simpler and richer structures
than visible from Feynman diagrams. Striking examples
are the discoveries of twistor-space [3] and Grassmannian
structures [4] in four dimensions for N ¼ 4 super-Yang-
Mills (sYM) theory, as well as interpolations between
weak and strong coupling [5–7]. In another development
we noted [8] that at tree level we could impose a duality
between color and kinematics for gauge theories, without
altering the amplitudes. This has important consequences
in clarifying the tree-level relation between gravity and
gauge theory. As we shall argue, this duality also greatly
clarifies the multiloop structure of (super)gravity theories.

The key tool for our studies of loop amplitudes has been
the unitarity method [9]. An important refinement which
simplifies multiloop studies is the method of maximal cuts
[10,11], which relies on generalized unitarity [12]. Here we
will make use of these tools to present an all-loop exten-
sion of recently discovered tree-level relations. As we shall
explain, this allows us to immediately write down multi-
loop gravity amplitudes directly from gauge-theory multi-
loop amplitudes once they have been organized to respect
the duality between kinematics and color.

To understand the relationship between tree-level grav-
ity and gauge-theory amplitudes, consider a gauge-theory

amplitude where all particles are in the adjoint color rep-
resentation. By exercising the trivial ability to absorb any
higher-vertex terms into diagrams with only cubic vertices
using factors of inverse propagators, we can choose to
write it in the form,
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where the sum runs over the ð2n� 5Þ!! cubic diagrams and
the product runs over all propagators (internal lines) 1=p2
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of each diagram. The ci are the color factors obtained by

dressing every three vertex with an ~fabc ¼ i
ffiffiffi
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ture constant, and the ni are kinematic numerator factors.
In general the ni may be deformed under any shifts,

ni ! ni þ �i, where the �i are arbitrary functions satisfy-
ing the constraint,
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We call this a generalized gauge transformation, as some of
the invariance does not correspond to a gauge transforma-
tion in the traditional sense.
The duality conjectured in Ref. [8] requires there to exist

such a transformation from any valid representation to one
where the numerators satisfy equations in one-to-one cor-
respondence with the Jacobi identity of the color factors,

ci ¼ cj � ck ) ni ¼ nj � nk: (3)

This duality is conjectured to hold to all multiplicity at tree
level in a large variety of theories, including supersymmet-
ric extensions of Yang-Mills theory. Surprisingly, this dual-
ity implies new nontrivial relations between the color-
ordered partial amplitudes of gauge theory [8]. A proof
of these relations has been made using monodromy for
integrations in string theory [13].
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Perhaps more striking is the observation [8] that once the
gauge-theory amplitudes are arranged into a form satisfy-
ing the duality (3), gravity tree amplitudes are given by,

�i

�
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n ð1; 2; . . . ; nÞ ¼ X
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p2
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; (4)

where the ~n represent numerator factors of a second gauge
theory, the sum runs over the same diagrams as in Eq. (1),
and � is the gravitational coupling constant. This form of
gravity tree amplitudes has been verified explicitly in field
theory through eight points [8] using the KLT relations.

These properties are now being understood in string
theory [14–16]. The heterotic string, in particular, offers
keen insight into these properties because of the parallel
treatment of color and kinematics [15]. A field theory proof
of Eq. (4) has now been given [17] for an arbitrary number
of external legs, assuming the duality (3) holds. We note
that the invariance (2) implies that only one family of
numerators (n or ~n) needs to satisfy the duality (3), a
consequence independently realized by Kiermaier—see
Ref. [17] for details. Below we will confirm this property
for the N ¼ 8 supergravity three-loop four-point
amplitude.

If both families of kinematic factors are for N ¼ 4
sYM theories, the gravity theory amplitudes are for N ¼
8 supergravity (sugra). If pure-Yang-Mills theory is instead
used, the obtained gravity amplitudes correspond to
Einstein gravity coupled to an antisymmetric tensor and
dilaton; the n-graviton tree-level amplitudes of this theory
correspond to pure gravity. Additionally, the tilde numera-
tor factors (~n) need not come from the same theory as the
untilde factors. This allows for the construction of gravity
amplitudes with varying amounts of supersymmetry.

In this Letter we conjecture that diagram numerators
satisfying the duality (3) can be found at loop level as well
whenever the tree amplitudes have this property. As such,
gauge theory and gravity amplitudes in these theories
would be related via,

ð�iÞL
gn�2þ2L

Aloop
n ¼ X

j

Z YL
l¼1

dDpl

ð2�ÞD
1

Sj

njcjQ
�j
p2
�j

; (5)

ð�iÞLþ1

ð�=2Þn�2þ2L
Mloop

n ¼ X
j

Z YL
l¼1

dDpl

ð2�ÞD
1

Sj

nj~njQ
�j
p2
�j

; (6)

where the sums now run over all distinct n-point L-loop
diagrams with cubic vertices. These include distinct per-
mutations of external legs, and the Sj are the (internal)

symmetry factors of each diagram. As at tree level, at least
one family of numerators (nj or ~nj) for gravity must be

constrained to satisfy the duality (3). (For pure gravity,
extra projectors are needed to obtain loop-level amplitudes
from the direct product of two pure Yang-Mills theories.)

Our loop-level conjecture is largely motivated by the
unitarity analysis along the lines presented in Ref. [8],

decomposing loop amplitudes into tree amplitudes whose
duality properties have been confirmed in multiple studies
[8,13–17], as well as by the very recent construction of
relevant Lagrangians whose diagrams satisfy the duality
[17]. Note, also, that it is straightforward to check that the
known one and two-loop four-point amplitudes of N ¼ 4
sYM theory andN ¼ 8 sugra, as given in ref. [18], satisfy
the conjecture.
The key aspect of our conjecture is that gauge-theory

multiloop amplitudes admit an organization of the integral
numerators making manifest the duality with color (3). As
a consequence, the gravity loop amplitudes of Eq. (6)
follow from applying the unitarity method and the tree-
level formula (4).
To test our conjecture in a rather nontrivial case, we

consider the three-loop four-point amplitude of N ¼ 8
sugra. This amplitude has already been studied in some
detail in Refs. [11,19]. Our task is to see if we can organize
the four-point three-loop amplitude of N ¼ 4 sYM so its
numerator factors satisfy the duality (3) with all internal
momenta off shell, and then to check if the expression
constructed via squaring those numerator factors is the
four-point three-loop amplitude of N ¼ 8 supergravity.
We identify the set of diagrams with cubic vertices

whose color factors mix via the color-Jacobi identity to
the nine diagram topologies used in constructing the four-
point three-loopN ¼ 4 sYM amplitude [11]. This gives a
total of 25 distinct three-loop diagrams to consider, up to
relabelings. Any contact terms will be included as inverse
propagators in the numerators.
We start by dressing each of the 25 distinct Feynman

integrands with generic numerator polynomials containing
a set of arbitrary parameters, which will be fixed by various
constraints. We include only those Lorentz products not
simply related to the others via momentum conservation.
After factoring out a universal factor of the color-ordered
tree amplitude and Mandelstam invariants stAtree

4 ð1; 2;
3; 4Þ, which appears in each term for N ¼ 4 sYM, the
remaining polynomial has total degree four in the external
and loop momenta. In order to respect the known power
counting, we require that the numerator of each diagram is
at most quadratic in the loop momenta. We also require that
each kinematic numerator respect the symmetries of the
diagram, accounting for the antisymmetry of each cubic
vertex under an interchange of any two legs.
To initially constrain the parameters, we use the unitarity

method to compare each cut of the ansatz against the
corresponding cut of the N ¼ 4 sYM amplitude,X

states

Atree
ð1Þ A

tree
ð2Þ A

tree
ð3Þ � � �Atree

ðmÞ ; (7)

invoking kinematics that place all cut lines on shell, l2i ¼ 0.
Once a solution consistent with a complete set of cuts is
found, we have the amplitude. From Ref. [11] we know
that for this amplitude the maximal and near maximal cuts
are sufficient (although we also evaluated other complete
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sets of cuts as a cross check). We perform all cut evalu-
ations in D dimensions using the known D-dimensional
results [19] for the cuts. Matching to the cut conditions
determines the amplitude but still allows freedom, as con-
tact terms can be assigned to various diagrams.

To impose the duality (3) on the amplitude, we step
through every propagator in each diagram, ensuring that
all duality relations hold off shell. On any diagram, we can
describe any internal line, carrying some momentum ls, in
terms of formal graph vertices Vðpa; pb; lsÞ, and
Vð�ls; pc; pdÞ where the pi are the momenta of the other
legs attached to ls, as illustrated on the left side of Fig. 1.
The duality (3) requires the following:

nðfVðpa; pb; lsÞ; Vð�ls; pc; pdÞ; . . .gÞ
¼ nðfVðpd; pa; ltÞ; Vð�lt; pb; pcÞ; . . .gÞ

þ nðfVðpa; pc; luÞ; Vð�lu; pb; pdÞ; . . .gÞ; (8)

where n represents the numerator associated with the
diagram specified by the set of vertices, the omitted verti-
ces are identical in all three diagrams, and ls � ðpc þ pdÞ,
lt � ðpb þ pcÞ and lu � ðpb þ pdÞ in the numerator ex-
pressions. There is one such equation for every propagator
in every diagram. Solving the system of distinct equations
enforces the duality conditions (3).

Imposing the duality on the ansatz, at this point, com-
pletely fixes the form of the amplitude. We find that only
the 12 diagrams shown in Fig. 2 contribute, with the
numerator factors given in Table I. As noted above, a direct
consequence of unitarity and the tree-level duality is that
squaring these numerator factors should give the numer-
ators for N ¼ 8 sugra. We verified this is indeed the case
using a complete set of cuts of the known result [11,19].
Interestingly, by cutting one or two internal legs of the
three-loop four-point gauge-theory amplitude, we obtain
eight-point one-loop and six-point two-loop amplitudes
also satisfying the duality (3) off shell, albeit with sums
over states and restricted kinematics.

We also construct another version of the three-loop four-
pointN ¼ 8 sugra expression via (6) using the ni given in
Table I of the present Letter and the correct, but duality
violating , ~ni from table I of Ref. [11]. We find that this is
also a valid representation of the N ¼ 8 sugra three-loop
four-point amplitude, providing a strong consistency check

on Table I and our conjecture. Such representations are
valid at loop level by the same argument as at tree level:
there exists a generalized gauge transformation (2) trans-
forming it to one where both ni and ~ni satisfy the duality.
An important feature of the supergravity solution dis-

played in Table I is that each contribution to Eq. (6) has no
worse power counting than the leading behavior of the
N ¼ 4 sYM amplitude. This is worthy of further study,
especially as relevant to four loops and beyond [20].
Perhaps the most surprising feature of our construction

is that, with the duality (3) imposed, the only cut informa-
tion actually required to construct the complete N ¼ 4
sYM amplitude is that under maximal cut conditions, the
numerator of diagram (e) is s�45. This suggests that the
constraints of this duality are powerful enough so that only
a relatively small subset of unitarity cuts is necessary to
fully determine higher-loop amplitudes.
The above three-loop example has maximal supersym-

metry. Naturally there is a question of whether our loop-
level conjecture (6) relies on supersymmetry. To see that it
does not we need only look at the two-loop four-point
identical-helicity amplitude in pure Yang-Mills given in
Ref. [21]. As noted in Ref. [8] the duality is manifest in this
example when cut conditions are imposed. This property
also persists with off shell loop momenta, and when the
numerators are squared, we obtain the correct identical-
helicity four-graviton amplitude in the theory of gravity
coupled to an antisymmetric tensor and dilaton.

FIG. 1 (color online). The loop-level numerator identity en-
forced by the duality (3) on propagator ls of the leftmost diagram
equates that diagram’s numerator with the sum of the numerators
of the rightmost diagrams.

FIG. 2. Loop diagrams contributing to both N ¼ 4 sYM and
N ¼ 8 sugra three-loop four-point amplitudes. Integrals (6) are
specified by combining their propagators with numerator factors
given in Table I. The (internal) symmetry factor for diagram
(d) is SðdÞ ¼ 2, the rest are unity. All distinct external permuta-

tions of each diagram contribute.
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In summary, we propose that the gauge-theory duality
between color and kinematic numerators imposed in
Ref. [8] carries over naturally to loop level. This allows
the expression of numerators of gravity diagrams using two
copies of gauge-theory ones. To test this idea, we discussed
two nontrivial examples, one in some detail. The known
connection between scattering amplitudes of N ¼ 4
super-Yang-Mills theory at weak [5] and strong coupling
[7], suggests that the duality between color and kinematics
will also impose nontrivial constraints at strong coupling.
It also seems likely that an analogous duality should hold
in higher-genus perturbative string theory. It has not es-
caped our attention that should the duality between color
and kinematics hold to all loop orders it would have
important implications in studies of the ultraviolet behav-
ior of quantum gravity theories (for recent reviews see
Refs. [22]). We close by remarking that the double-copy
gravity numerators hint at some notion of compositeness,
albeit with a rather novel structure. This structure may very
well have important consequences outside of perturbation
theory.
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TABLE I. The numerator factors of the integrals IðxÞ in Fig. 2. The first column labels the integral, the second column the relative
numerator factor for N ¼ 4 super-Yang-Mills theory. The square of this is the relative numerator factor for N ¼ 8 supergravity. An
overall factor of stAtree

4 has been removed, s, t, u are Mandelstam invariants corresponding to ðk1 þ k2Þ2, ðk2 þ k3Þ2, ðk1 þ k3Þ2 and
�ij ¼ 2ki � lj, where ki and lj are momenta as labeled in Fig. 2.

Integral IðxÞ N ¼ 4 Super-Yang-Mills (
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N ¼ 8 supergravity

p
) numerator

(a)–(d) s2

(e)–(g) ½sð��35 þ �45 þ tÞ � tð�25 þ �45Þ þ uð�25 þ �35Þ � s2�=3
(h) ½sð2�15 � �16 þ 2�26 � �27 þ 2�35 þ �36 þ �37 � uÞ þ tð�16 þ �26 � �37 þ 2�36 � 2�15 � 2�27 � 2�35 � 3�17Þ þ s2�=3
(i) ½sð��25 � �26 � �35 þ �36 þ �45 þ 2tÞ þ tð�26 þ �35 þ 2�36 þ 2�45 þ 3�46Þ þ u�25 þ s2�=3
( j)–(l) sðt� uÞ=3
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