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The covariance properties of angular momentum eigenstates imply the existence of a rotation-invariant

relation among the parameters of the difermion decay distribution of inclusively observed vector mesons.

This relation is a generalization of the Lam-Tung identity, a result specific to Drell-Yan production in

perturbative QCD, here shown to be equivalent to the dynamical condition that the dilepton is always

produced transversely polarized with respect to quantization axes belonging to the production plane.
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The partonic cross section for dilepton production in
perturbative QCD obeys the so-called Lam-Tung identity
[1], a relation between the helicity structure functions of
the virtual photon or, equivalently, between the coefficients
of the lepton angular distribution measured in the dilepton
rest frame, �# þ 4�’ ¼ 1, with the �# and �’ parameters

introduced later in this Letter. The Lam-Tung relation
represents for lepton pair production the analog of the
Callan-Gross relation in deep inelastic scattering, F1ðxÞ �
2xF2ðxÞ ¼ FLðxÞ ¼ 0, where the Bjorken scaling func-
tions F1 and F2 are reciprocally connected by the condition
that the longitudinal helicity component FL of the massive
photon vanishes identically. The Callan-Gross relation, a
consequence of the interaction between the photon probe
and half-integer spin quarks, is not exact, being subject to
substantial Oð�sÞ corrections due to gluon radiation.

The theoretical relevance of the Lam-Tung relation re-
sides in the fact that, although the dilepton production
cross section is substantially modified by QCD corrections,
the relation between the different helicity contributions to
this cross section remains unchanged up to Oð�sÞ, while
relatively small corrections affect the angular distribution
when subsequent orders in �s are taken into account [2,3].
In fact, the Lam-Tung relation is such a solid prediction of
perturbative QCD that its violation is a strong signal of
nonperturbative effects. Experimentally, the Lam-Tung
relation has been shown to be violated in pion-nucleus
collisions [4], raising speculations about the possible quan-
titative effects of intrinsic parton kT [5] or of higher twist
contributions [6]. Saturation effects are also expected to
contribute to a violation of the Lam-Tung relation in
proton-nucleus and deuteron-nucleus collisions at RHIC
and at the LHC [7].

The distinctive feature of the Lam-Tung relation is that it
is invariant under rotations in the dilepton rest frame
around the axis perpendicular to the production plane. In
this Letter we show that this property is a completely
general consequence of the rotational covariance of J ¼
1 angular momentum eigenstates. It does not depend,

therefore, on the specific J ¼ 1 state considered nor on
the production process. This implies that the decay distri-
bution of any vector state (including Drell-Yan and quark-
onium production) can be described in terms of a rotation-
invariant relation analogous to the Lam-Tung relation.
We start by considering the case of a single production

‘‘subprocess,’’ in which the vector meson V is always
formed as a specific superposition of the three Jz eigen-
states, with eigenvalues m ¼ þ1;�1; 0, with respect to a
chosen polarization axis z:

jVðiÞi ¼ bðiÞþ1j þ 1i þ bðiÞ�1j � 1i þ bðiÞ0 j0i: (1)

Assuming helicity conservation at the difermion vertex
(neglecting the fermion mass), the angular distribution of
the parity-conserving decay is
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where # and’ are the (polar and azimuthal) angles formed
by the positive fermion with, respectively, the polarization
axis z and the xz plane, and
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with aðiÞ0 , aðiÞþ1, and aðiÞ�1 being the partial decay amplitudes

of the three Jz components of the vector state and N ðiÞ ¼
jaðiÞ0 j2 þ jaðiÞþ1j2 þ jaðiÞ�1j2.

In this Letter we only consider inclusive production.
Therefore, the only sensible experimental definition of
the xz plane coincides with the production plane, contain-
ing the directions of the colliding particles and of the
decaying particle itself. The last two terms in Eq. (2)
introduce an asymmetry of the distribution by reflection
with respect to the production plane. Such asymmetry is
not forbidden in individual parity-conserving events. In
hadronic collisions, due to the intrinsic parton transverse
momenta, for example, the ‘‘natural’’ polarization plane
does not coincide event by event with the production plane.
However, the symmetry by reflection must be a property of
the observed event distribution when only parity-
conserving processes contribute. Indeed, the terms in
sin2# sin2’ and sin2# sin’ are unobservable, because
they vanish on average.

In the presence of n contributing production processes

with weights fðiÞ, the most general observable distribution
can be written, therefore, as

Wðcos#;’Þ ¼ Xn
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(5)

Our considerations are based on two propositions con-
cerning the rotational properties of the generic J ¼ 1 state
defined in Eq. (1).

Proposition 1: Each amplitude combination bðiÞþ1 þ bðiÞ�1

is invariant by rotation around the y axis.
Proposition 2: For each subprocess there exists a quan-

tization axis zðiÞ? with respect to which bðiÞ?0 ¼ 0; if bðiÞ0 ,

bðiÞþ1, and bðiÞ�1 are real, z
ðiÞ? belongs to the xz plane.

Proposition 1 follows from the relations among rotation
matrix elements d1þ1;Mð#Þ þ d1�1;Mð#Þ ¼ �jMj;1. When

jVðiÞi is defined with a real bðiÞ0 (always possible), the frame

defined in Proposition 2 is reached through successive
rotations around, respectively, the z and y axes by angles
’? and #?, defined as

cos#? ¼ RþR� þ IþI�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2bðiÞ20 ðR2þ þ I2�Þ þ ðRþR� þ IþI�Þ2

q ;

cos’? ¼ Rþffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2þ þ I2�

q ; sin’? ¼ � I�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2þ þ I2�

q ;

(6)

where R� ¼ ReðbðiÞþ1 � bðiÞ�1Þ and I� ¼ ImðbðiÞþ1 � bðiÞ�1Þ.
If all three amplitudes are real, or (less strictly) if

ImðbðiÞþ1 � bðiÞ�1Þ ¼ 0, then ’? ¼ 0 and the rotation is
around the y axis.
Proposition 1 and the obvious rotation invariance of

jaðiÞ0 j2 þ jaðiÞþ1j2 þ jaðiÞ�1j2 imply that the quantities

F ðiÞ ¼ 1

2

jaðiÞþ1 þ aðiÞ�1j2
jaðiÞ0 j2 þ jaðiÞþ1j2 þ jaðiÞ�1j2

(7)

(bounded between 0 and 1) are independent of the chosen
experimental polarization frame. Using also Eqs. (3) and
(5), we find that the following combination of observable
parameters is frame independent:

F ¼
P

n
i¼1 f

ðiÞN ðiÞF ðiÞ
P

n
i¼1 f

ðiÞN ðiÞ ¼ 1þ �# þ 2�’

3þ �#

: (8)

Equation (8) can be written as

ð1�F Þð3þ �#Þ ¼ 2ð1� �’Þ; (9)

an expression formally analogous to the Lam-Tung relation
[1], which, as mentioned above, accounts for Drell-Yan
production up to first-order QCD modifications, neglecting
parton transverse momenta.
At this level of description, the topology of each con-

tributing subprocess (quark-antiquark annihilation without
or with single gluon emission, Compton-like quark-gluon
scattering, etc.) is characterized by one reaction plane,
coinciding with the experimental production plane.

Therefore, for each single subprocess �?ðiÞ
’ ¼ �?ðiÞ

#’ ¼ 0,

implying [Eq. (3)] that the three partial decay amplitudes
(and, thus, the three components of the produced angular
momentum state) can be chosen to be real. Proposition 2,
together with Eq. (3), implies, then, that the observed
dilepton distribution is a convolution of subdistributions
of the kind

�ðiÞ?
# ¼ þ1; �ðiÞ?

’ ¼ 2F ðiÞ � 1;

�?ðiÞ?
’ ¼ �ðiÞ?

#’ ¼ �?ðiÞ?
#’ ¼ 0;

(10)

each one referred to a specific polarization axis zðiÞ? be-
longing to the production plane.
The Lam-Tung relation is obtained from Eq. (8) in the

special case when the invariants F ðiÞ (and, thus, F ) are
equal to 1=2. This means, according to Eq. (10), that all
competing subprocesses lead to the same kind of fully
transverse, purely polar decay anisotropy, with respect to
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possibly different natural axes zðiÞ?. In other words, the
frame independence of the Lam-Tung relation is the kine-
matic consequence of the rotational properties of the J ¼ 1
angular momentum eigenstates, while its specific form
(F ¼ 1=2) derives from the dynamical input that all con-
tributing subprocesses produce transversely polarized di-
lepton states.

More generally, the difermion decay of a vector state
inclusively observed in a given kinematic condition is al-
ways described in frame-independent terms by a specific
form of Eq. (9). The advantages of this kind of representa-
tion, complementary to the determination of the full angu-
lar distribution, are described in Ref. [8] for the specific
case of quarkonium polarization studies.

In summary, we have shown that rotational invariance
imposes frame-invariant constraints on the polar and azi-
muthal anisotropy parameters of the difermion decay dis-
tribution of vector mesons. In particular, for any mixture of
production mechanisms in a given kinematic condition
there exists a frame-invariant relation among the angular
coefficients, depending on one calculable parameter, F .
The Lam-Tung relation corresponds to the special case
when all processes produce transversely polarized dilep-
tons with respect to quantization axes belonging to the
production plane. Any violation of this relation will con-
tinue to be described by a suitably modified frame-

invariant relation. The frame-invariant formalism can be
extended to the study of the spin alignment of quarkonium
and other vector particles.
P. F. and J. S. acknowledge support from Fundação para

a Ciência e a Tecnologia, Portugal, under Contracts
No. SFRH/BPD/42343/2007 and No. CERN/FP/109343/
2009.

[1] C. S. Lam and W.K. Tung, Phys. Rev. D 18, 2447
(1978).

[2] E. Mirkes and J. Ohnemus, Phys. Rev. D 51, 4891
(1995).

[3] E. L. Berger, J.-W. Qiu, and R.A. Rodriguez-Pedraza,
Phys. Rev. D 76, 074006 (2007).

[4] M. Guanziroli et al. (NA10 Collaboration), Z. Phys. C 37,
545 (1988); J. S. Conway et al. (E615 Collaboration),
Phys. Rev. D 39, 92 (1989).

[5] D. Boer, Phys. Rev. D 60, 014012 (1999); D. Boer and P. J.
Mulders, Phys. Rev. D 57, 5780 (1998).

[6] A. Brandenburg, S. J. Brodsky, V. V. Khoze, and D.
Muller, Phys. Rev. Lett. 73, 939 (1994).

[7] F. Gelis and J. Jalilian-Marian, Phys. Rev. D 76, 074015
(2007).

[8] P. Faccioli, C. Lourenço, and J. Seixas, Phys. Rev. D 81,
111502(R) (2010).

PRL 105, 061601 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending

6 AUGUST 2010

061601-3

http://dx.doi.org/10.1103/PhysRevD.18.2447
http://dx.doi.org/10.1103/PhysRevD.18.2447
http://dx.doi.org/10.1103/PhysRevD.51.4891
http://dx.doi.org/10.1103/PhysRevD.51.4891
http://dx.doi.org/10.1103/PhysRevD.76.074006
http://dx.doi.org/10.1007/BF01549713
http://dx.doi.org/10.1007/BF01549713
http://dx.doi.org/10.1103/PhysRevD.39.92
http://dx.doi.org/10.1103/PhysRevD.60.014012
http://dx.doi.org/10.1103/PhysRevD.57.5780
http://dx.doi.org/10.1103/PhysRevLett.73.939
http://dx.doi.org/10.1103/PhysRevD.76.074015
http://dx.doi.org/10.1103/PhysRevD.76.074015
http://dx.doi.org/10.1103/PhysRevD.81.111502
http://dx.doi.org/10.1103/PhysRevD.81.111502

