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We propose a novel definition of efficiency, valid for motors in a nonequilibrium stationary state

exchanging heat and possibly other resources with an arbitrary number of reservoirs. This definition,

based on a rational estimation of all irreversible effects associated with power production, is adapted to the

concerns of sustainable development. Under conditions of maximum power production the new efficiency

has for upper bound 1
2 in situations relevant for mesoscopic systems. These results imply that at maximum

power bithermal, stationary motors could reach a higher Carnot efficiency than the usual cyclic motors.
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From the very beginnings of thermodynamics, efficiency
in work production from heat exchanges played a basic
theoretical and practical role. In the case of a cyclic motor
functioning between two reservoirs at respective tempera-
tures T1 and T2 (T1 > T2), the historical Carnot efficiency
[1] is defined as the ratio of the work produced to the heat
provided by the high temperature reservoir during a cycle,
which gives a very different status to the heat sources. The
same definition can be used for stationary motors, which
are systems exchanging heat with reservoirs while remain-
ing in a nonequilibrium stationary state. If the heats ex-
changed per unit time with reservoirs at temperatures T1

and T2 are _Q1 and _Q2, respectively, and if the (positive)
power production of the motor is�P , its Carnot efficiency
is �C ¼ �P= _Q1 � 1� T2=T1: again, the cost of rejecting
the heat _Q2 to the cold source is not taken into account
directly. Our main purpose is to introduce a logical defini-
tion of efficiency which avoids this disadvantage, and can
be extended to systems exchanging other resources with
the reservoirs, since biological processes, for instance,
usually do not involve significantly different temperatures.
On the other hand, the power vanishes at the maximum
value of Carnot efficiency [2–9], and it is more realistic to
consider the efficiency at maximum power production:
thus, we will compute the new efficiency in this situation.
In order to do it, we use the formalism of stochastic
thermodynamics [10–17] and the notations introduced in
previous articles [15,16].

In this framework we consider a mesoscopic, discrete
system s undergoing a discrete time process, for the sake of
simplicity. The elementary time step � is taken as time unit.
The dynamics is defined by the stochastic matrix R �
ðRxyÞ, where Rxy � pðx; tþ �jy; tÞ is the probability of

transition y ! x from y to x in time �, y and x being two
states of s. For each elementary transition y ! x such that
Ryx and Rxy differ from 0, we suppose that the following

asymmetry relation holds:

Rxy=Ryx ¼ expð�StotÞxy; (1)

where ð�StotÞxy is the total entropy variation of all systems

implied in the transition. Relation (1) was introduced and
discussed in previous articles [15–17]. For discrete Markov
dynamics, it is equivalent to the time reversal asymmetry
relation found by Gallavotti and Cohen [18] and developed
later by several authors [19,20]. We assume that the system
s can exchange energy with several reservoirs S�, labeled
by index � ¼ 1, 2, . . . . Reservoir S� is characterized by its
inverse temperature �� ¼ 1=T�, the Boltzmann factor kB
being taken to be unity, and its entropy variation is ���

�q� when it supplies heat �q� to the system. The system s
can also receive work from a mechanical system S0, whose
entropy does not change with time and whose inverse
temperature can be defined as �0 ¼ 0. During an elemen-
tary transition y ! x, we suppose that s exchanges heat
with at most one of the reservoirs, and we denote �qxy the

heat it receives from this reservoir. Similarly, �wxy is the

work received from the mechanical system and �xys is the

entropy variation of s during transition y ! x. Here the
symbol �xyf, for a state function f of system s, represents

the variation of f during the transition, whereas �wxy (or

any quantity denoted �Xxy associated to the transition) is

not, in general, the variation of any function of the state of s
alone [11]. So, relation (1) can be written

Rxy=Ryx ¼ expð�StotÞxy ¼ expð�xys� �xy�qxyÞ: (2)

The classical equilibrium relation between entropy and
extensive variables is satisfied for the reservoirs. On the
other hand, we assume that the system s is out of equilib-
rium, but close to local equilibrium at the molecular scale,
which, nevertheless, allows for strong disequilibrium at
macroscopic and mesoscopic scales [21]. If it only ex-
changes energy with the reservoirs, its energy variation
during transition y ! x is simply �xye ¼ �qxy þ �wxy.

When s exchanges not only energy, but also m other
extensive quantities A1; . . . ; Am with one of the reservoirs
during transition y ! x, the entropy variation of this res-
ervoir is
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�Sxy ¼ �xy�Exy þ
X
i�1

�i
xy�A

i
xy; (3)

where �i
xy ¼ @Sxy=@A

i
xy is the intensive variable of the

reservoir associated to the extensive variable Ai, and �Ai
xy

is the variation of resource Ai in this reservoir. In the same
transition, system s receives energy ��Exy and quantity

�xya
i ¼ ��Ai

xy of resource Ai (i ¼ 1; . . . ; m) from the

reservoir. Correspondingly, s receives the heat �qxy ¼
��xy �Sxy from the reservoir and work �wxy from the

mechanical system. So, the energy variation of s during the
transition y ! x is

�xye ¼ ��Exy þ �wxy

¼ �xyq� ð�xyÞ�1

�X
i�1

�i
xy�xya

i

�
þ �wxy: (4)

We now assume that system s obeys the nonequilibrium
stationary probability distribution p0ðxÞ. The probability
current corresponding to the elementary transition y ! x
is [16,17]

Jxy ¼ Rxyp
0ðyÞ � Ryxp

0ðxÞ; (5)

which differs from 0 for at least one transition y ! x, since
s is not in equilibrium. The stationary total entropy pro-
duction per unit time [21,22] is

D ¼ 1

2

X
x;y;�xy>0

Jxu� �Sxy � 1

2

X
x;y;�xy>0

Dxy � 0 (6)

with

� �Sxy ¼ ln
Rxyp

0ðyÞ
Ryxp

0ðxÞ ¼ �Sxy þ �xyðsþ�Þ: (7)

The last expression can be interpreted as the variation
� �Sxy of the overall entropy in transition y ! x, including

the variation of the information potential [16], or stochastic
potential [23–25], �ðxÞ ¼ � lnp0ðxÞ, of system s. The
power produced by s can be written [16]

� P ¼ �DW þA � A (8)

where the power dissipation DW and A are defined by

DW ¼ 1

2

X
x;y;�xy>0

1

�xy

Dxy ¼ 1

2

X
x;y;�xy>0

Jxy
1

�xy

� �Sxy � 0;

(9)

A ¼ 1

2

X
x;y;�xy>0

1

�xy

Jxy

�
� X

i�>0

�i
xy�xya

i þ �xyðsþ�Þ
�

� 1

2

X
x;y;�xy>0

1

�xy

JxyBxy: (10)

The irreversible power dissipation �DW is the ener-
getic equivalent of the entropy produced per unit time by
the irreversible phenomena. On the other hand,A may be
called the reversible resources consumption per unit time:

in fact, the sign of A is reversed if the currents can be
reversed by changing the stochastic dynamics, contrarily to
the power dissipation �DW which cannot be negative.
The upper bound A of �P is obtained if and only if
Dxy ¼ 0 for any transition with �xy > 0, which implies

that Jxy ¼ 0 for any transition: detailed balance is then

satisfied and P vanishes. Thus, in order that a system can
act as a motor (�P > 0), a necessary condition is that it is
not in equilibrium: the power dissipation should be positive
[16].
The previous discussion allows one to define a new

efficiency � taking the entropic dissipation into account
rationally, by comparing the mechanical power actually
produced �P to the maximum power A obtained from
the same resources consumption if all irreversible effects
can be avoided

� ¼ �P
A

¼ 1�DW

A
� 1: (11)

Because this definition considers all the irreversible
effects due to the power production from the heat sources,
it seems adapted to the concerns of sustainable develop-
ment and we may call � ‘‘sustainable efficiency.’’ It is clear
that � cannot be expressed in terms of Carnot efficiency �C

alone, but we will see later that the upper bounds of both
efficiencies can be related.
Like �C, � is maximum when detailed balance is sat-

isfied: then power production vanishes. Thus, as mentioned
in the introduction, we will consider it in the conditions of
maximum power production [2–9]. From (9) and (10) it is
seen that if the stochastic potential is supposed to be fixed,
A is a linear function of the currents Jxy, whereas the

power dissipationDW can be approximated by a quadratic
function of the currents near detailed balance conditions.
These remarks suggest [16] that if maximum power pro-
duction can be attained close to equilibrium, then the
power dissipation is equal to the power production (a
comparable result was obtained by Van den Broeck [8]
when studying the maximum power of a Carnot machine in
the framework of linear irreversible thermodynamics):
then, the corresponding value of � should be 1

2 . In fact,

the constraints existing on the transition probabilities must
be taken into account, but they can be expressed linearly in
terms of the currents: so, they just reduce the number of
independent variables in A and DW , which remains
linear and quadratic, respectively, and the conclusion still
holds: �� 1

2 at maximum power close to reversibility. We

will show, however, that this conclusion can be generalized
even far from reversibility under wide conditions. Clearly,
it is essential to specify which parameters are varied for the
maximization. Again, we assume that the stationary distri-
bution p0ðxÞ is fixed. Fixing p0ðxÞ amounts to fixing the
stationary average of any observable, so that the variations
we are considering concern the purely kinetics character-
istics of the system: this condition is meaningful for meso-
scopic or macroscopic systems. Under this constraint,
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relevant variable parameters are described in the section
‘‘Methods.’’ Then it is proved that the sustainable effi-
ciency has the upper bound �� ¼ 1=2

� � �� ¼ 1
2: (12)

As mentioned above, the upper bound 1
2 can be attained

close to reversibility, i.e., when the currents are small
enough, a condition that can be realized even for a large
temperature difference and strong disequilibrium. These
results are obtained by maximizing the power �P under
the relevant constraints. For clarity, the calculations are
summarized and discussed in the section Methods. They
are presented more completely in online supplementary
material [26], as well as other derivations of the article. We
remark that the upper bound �� of the sustainable efficiency
can be different in a different situation, in particular, if the
stationary distribution is varied. On the other hand, as
discussed in the supplementary information [26], the pre-
vious conditions may be irrelevant for a very small system,
such as the ‘‘three-level motor’’ introduced in 1959 by
Scovil et al. [27] and recently considered by other authors
[17,28,29].

In spite of its theoretical interest, the sustainable effi-
ciency � can be difficult to evaluate from experiments:
thus, for historical and practical reasons, the Carnot effi-
ciency �C remains a basic concept for stationary thermal
motors. For such a motor functioning between tempera-
tures T1 and T2 (T1 > T2), it is easily written

�C ¼ �P
_Q1

¼ 1� T2

T1

� T2

D
_Q1

; (13)

where D is the entropy production per unit time, given by
(6). The heat _Q1 received per unit time at temperature T1

can also be expressed in term of the mesoscopic quantities
used in the stochastic formalism, and we obtain after some
algebra

�C ¼
�
1� T2

T1

�
ð1� �Þ

with � ¼ T2

D0 þD1 þD2

T1D1þT2D2

1�� þ T2D0 � ðT1 � T2ÞD1

:
(14)

Here, � is the sustainable efficiency (11) andDi (i ¼ 0,
1, 2) is the entropy produced during the exchanges with the
reservoir of inverse temperature �i. Focusing on the case
when the system only exchanges energy with the reser-
voirs, it can be shown that if we know an upper bound �� of
the sustainable efficiency, the Carnot efficiency at maxi-
mum power satisfies the inequality

�C � ��ðT1 � T2Þ
��T1 þ ð1� ��ÞT2

: (15)

If, in particular, �� ¼ 1
2 as discussed previously, inequal-

ity (15) yields a new upper bound ��C of Carnot efficiency
at maximum power

�C � ��C ¼ T1 � T2

T1 þ T2

: (16)

The upper bound ��C can be reached close to reversibility
conditions, with the conditions that the entropy production
D0 during the exchanges with the mechanical system
vanishes (which can be obtained by a convenient lubrica-
tion of the mechanisms), and thatD2=D1 ! 0. Thus ��C is
an asymptotic bound: it cannot be attained exactly in
realistic conditions, but it can be approached thanks to
technical advances. This is also true for the classical
Carnot bound and most other bounds. It should be pointed
out that the upper bound (16) of Carnot efficiency is larger
than so-called Curzon-Ahlborn upper bound ��D for cyclic
motors, suggested by Yvon [2], then studied in more detail
by Curzon and Ahlborn and various authors [3–9]. In fact

��D � 1�
�
T2

T1

�
1=2 � T1 � T2

T1 þ T2

� ��C < 1� T2

T1

��C and ��D being equivalent when T2=T1 � 1: then ��C �
��D � ðT1 � T2Þ=ð2T1Þ, as found [8,9,29] for cyclic ��C

motors. Inequality (16) should be compared with other
results recently presented by several authors in different
contexts [9,29–34]. Although the three-level motor
[17,27,29] has not enough degrees of freedom to satisfy
the conditions leading to the upper bound 1

2 of �, it can be

analyzed completely [28]: the results show that its Carnot
efficiency can indeed be significantly higher than the
Curzon-Ahlborn bound �D.
Thus, the sustainable efficiency � defined in this Letter

proves to be useful both for ideological reasons and for
theoretical purposes. First, it is appropriate to take into
account the actual ‘‘price’’ that should be paid for power
production from heat sources, because it compares this
power to the irreversible power dissipation due to the
information loss implied by the processes. This loss cannot
be avoided, but should be minimized in order to preserve
our living conditions in the best possible way. The sustain-
able efficiency � is an indicator of how much this objective
is fulfilled in power production: for this reason, it may be
useful for new technologies aiming at sustainable develop-
ment and green energy production. A remarkable property
of the sustainable efficiency is that, in situations which are
relevant for mesoscopic systems, its upper bound is 1

2 . It

should be emphasized that, using the general formula (4),
the concept of sustainable efficiency can also be applied for
power production from other forms of energy, such as
chemical energy: so, it is well adapted for biological
processes which, in general, do not involve heat exchanges
with reservoirs at significantly different temperatures.
Another, perhaps more fundamental, interest of sustain-

able efficiency is that it can be related to Carnot efficiency,
universally used for thermal motors. We have shown that
the properties of sustainable efficiency imply a new upper
bound for Carnot efficiency at maximum power which in
many cases can be written ðT1 � T2Þ=ðT1 þ T2Þ. This
upper bound is higher than the Curzon-Ahlborn bound
derived for cyclic motors. This result suggests that sta-
tionary motors can reach higher efficiency than the macro-
scopic engines usually designed in engineering.
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Methods.—We assume that the user can control the ratio
½Rxyp0ðyÞ�=½Ryxp0ðxÞ�, related to the exchanges with the

reservoirs by (1), and we set

Rxyp
0ðyÞ ¼ Cxy expð�xyÞ;

Ryxp
0ðxÞ ¼ Cxy expð��xyÞ;

(17)

with Cxy ¼ Cyx. The condition �xy ¼ 0 for all x, y corre-

sponds to detailed balance. We suppose that for each non-
ordered pair (x, y) with x � y the �xy can be varied

independently of the others without changing Cxy nor the

stationary distribution p0ðxÞ. As remarked above, fixing
p0ðxÞ means that the observable properties of the system
are kept constant. It should be pointed out that the previous
constraints on �xy may be irrelevant for very small sys-

tems, which do not have enough degrees of freedom: they
are further discussed in the supplementary information
[26]. With these assumptions the quantities Bxy defined

by (10) remain constant when the �xy are varied and by (8)

we have

� P ¼ X
ðx;yÞ;�xy�0

2Cxy

�xy

sinhð�xyÞð�2�xy þ BxyÞ (18)

where the sum runs on distinct pairs (x, y). We now max-
imize �P with respect to the �xy (x � y) when the Cxy

(x � y) are kept constant, but the Cxx are varied in order
that the stationary distribution p0 remains unchanged. In
the present situation, the only constraints on the �xy areX

y;y�x;�xy�0

Cxy sinhð�xyÞ ¼ 0 for all x: (19)

which can be realized if the number of degrees of freedom
is sufficient. Maximizing �P under these constraints al-
lows one to conclude (see supplementary information [26])
that

� � �� ¼ 1
2; (20)

the maximum 1
2 being attained close to reversibility con-

ditions. Thus this upper bound, suggested by a coarse
reasoning close to reversibility, remains valid in all con-
ditions in the situation considered here.
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