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In order to explore the reason why the single-layered cuprates, La2�xðSr=BaÞxCuO4 (Tc ’ 40 K) and

HgBa2CuO4þ� (Tc ’ 90 K) have such a significant difference in Tc, we study a two-orbital model that

incorporates the dz2 orbital on top of the dx2�y2 orbital. It is found, with the fluctuation exchange

approximation, that the dz2 orbital contribution to the Fermi surface, which is stronger in the La system,

works against d-wave superconductivity, thereby dominating over the effect of the Fermi surface shape.

The result resolves the long-standing contradiction between the theoretical results on Hubbard-type

models and the experimental material dependence of Tc in the cuprates.
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The physics of high-Tc superconductivity, despite its
long history, harbors rich problems which are still open.
Specifically, given the seminal discovery of the iron-based
superconductors [1] and their striking material dependence
of Tc [2], it should be important as well as intriguing to
have a fresh look at the cuprates, which still have the
highest Tc to date, to understand their material dependence
of the Tc. One of the basic problems is the significant
difference in Tc within the single-layered materials, i.e.,
La2�xðSr=BaÞxCuO4 with a maximum Tc of about 40 K
versus HgBa2CuO4þ� with a Tc ’ 90 K. Phenomeno-
logically, it has been recognized that the materials with
Tc � 100 K tend to have ‘‘round’’ Fermi surfaces, while
the Fermi surface of the La system is closer to a square
shape which implies a relatively better nesting [3,4].

Conventionally, the materials with a rounded Fermi
surface have been modeled by a single-band model with
large second [t2ð>0Þ] and third [t3ð<0Þ] neighbor hopping
integrals, while the ‘‘low-Tc’’ La system has been consid-
ered to have smaller t2, t3. This, however, has brought
about a contradiction between theories and experiments.
Namely, while some phenomenological [5] and t-J model
[6,7] studies give a tendency consistent with the experi-
ments, a number of many-body approaches for the
Hubbard-type models with realistic values of on-site U
show suppression of superconductivity for large t2 > 0
and/or t3 < 0, as we shall indeed confirm below [8].

To resolve this discrepancy, here we consider a two-
orbital model that explicitly incorporates the dz2 orbital

on top of the dx2�y2 orbital. The former component has in

fact a significant contribution to the Fermi surface in the La
system. We shall show that the key parameter that deter-
mines Tc is the energy level difference between the dx2�y2

and dz2 orbitals, i.e., the weaker the dz2 contribution to the

Fermi surface, the better for d-wave superconductivity,

where a weaker contribution of the dz2 results in a rounded
Fermi surface (which in itself is not desirable for super-
conductivity), but it is the ‘‘single-orbital nature’’ that
favors a higher Tc dominating over the effect of the
Fermi surface shape for the La system.
Let us start with a conventional calculation for the

single-band Hubbard Hamiltonian, H ¼ P
ij�tijc

y
i�cj� þ

U
P

ini"ni#. Here we take the nearest-neighbor hopping

�t1 (’0:4 eV, see Table I) to be the unit of energy, U ¼
6, the temperature T ¼ 0:03, and the band filling n ¼ 0:85
are fixed, while we vary t2 ¼ �t3 with t2 > 0. We then
apply the fluctuation exchange approximation (FLEX)
[9,10] to solve the linearized Eliashberg equation. Tc is
the temperature at which the eigenvalue � of the Eliashberg
equation reaches unity, so � at a fixed temperature can be
used as a measure for the strength of the superconducting
instability. We show in Fig. 1 � as a function of ðjt2j þ
jt3jÞ=jt1j (¼2jt2j=jt1j here), which just confirm that, within
the single-band model, � (hence Tc) monotonically de-
creases with increasing jt2j and jt3j. A calculation with
the dynamical cluster approximation (DCA) shows that a
negative t2 works destructively against d-wave supercon-
ductivity [11], and a more realistic DCA calculation that

TABLE I. Hopping integrals within the dx2�y2 orbital for the
single and two-orbital models, and �E � Ex2�y2 � Ez2 .

One-orbital Two-orbital

La Hg La Hg

t1½eV� �0:444 �0:453 �0:471 �0:456
t2½eV� 0.0284 0.0874 0.0932 0.0993

t3½eV� �0:0357 �0:0825 �0:0734 �0:0897
ðjt2j þ jt3jÞ=jt1j 0.14 0.37 0.35 0.41

�E½eV� � � � � � � 0.91 2.19
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considers the oxygen p� orbitals for the La and Hg cup-
rates also indicates a similar tendency [12]. As mentioned
above, this seems to contradict with the experimental
results that the materials with larger t2 and t3 have actually
higher Tc’s [3].

To resolve this, we now introduce the dx2�y2 � dz2 two-

orbital model. For the La system, it has long been known
that a band with a strong dz2 character lies rather close to
the Fermi energy [13–15]. More recently, it has been
discussed in Refs. [3,16] that the shape of the Fermi surface
is determined by the energy level of the ‘‘axial state’’
consisting of a mixture of Cu dz2-O pz and Cu 4s orbitals,
and that the strength of the dz2 contribution causes the

difference in the Fermi surface shape between the La and
Hg systems. Namely, the dz2 contribution is large in the La
system making the Fermi surface closer to a square, while
the contribution is small in the Hg system making the
Fermi surface more rounded. In Fig. 2, we show the pres-
ent, first-principles [17] result for band structures in the
two-orbital model for the La and Hg systems, obtained by
constructing maximally localized Wannier orbitals [18].
The lattice parameters adopted here are experimentally
determined ones for the doped materials [19,20]. We can
here confirm that in the La system the main band (usually
considered to be the ‘‘dx2�y2 band’’) has in fact a strong dz2

character on the Fermi surface near the N point, which
corresponds to the wave vectors (�, 0), (0, �) in the
Brillouin zone of the square lattice. The dz2 contribution

is seen to ‘‘push up’’ the van Hove singularity (vHS) of the
main band, resulting in a seemingly well nested (square
shaped) Fermi surface. In the Hg system, on the other hand,
the dz2 band stays well away from EF, and consequently

the vHS is lowered, resulting in a rounded Fermi surface.
If we estimate in the two-orbital model the ratio ðjt2j þ

jt3jÞ=jt1j within the dx2�y2 orbitals, we get 0.35 for the La

system against 0.41 for Hg (Table I), which are rather close
to each other. This sharply contrasts with the situation in
which the model is constrained into a single band. There,
the Wannier orbital has mainly dx2�y2 character, but has

‘‘tails’’ with a dz2 character especially for the La system.

Then the ratio ðjt2j þ jt3jÞ=jt1j in the single-orbital model
reduces to 0.14 for La against 0.37 for Hg (Table I), which
is just the conventional view mentioned in the introductory
part. From this, we can confirm that it is the dz2 contribu-
tion that makes the Fermi surface in the La system square
shaped, while the ‘‘intrinsic’’ Fermi surface of the high Tc

cuprate family is, as in the Hg system, rounded.
Now we come to the superconductivity in the two-

orbital model. For the electron-electron interactions, it is
widely accepted that the intraorbital U is 7–10t (with t�
0:45 eV) for the cuprates, so we take U ¼ 3:0 eV. The
Hund’s coupling J (¼pair-hopping interaction J0) is typi-
cally �0:1U, so here we take J ¼ J0 ¼ 0:3 eV, which
gives the interorbital U0 ¼ U� 2J ¼ 2:4 eV [21]. The
temperature is fixed at kBT ¼ 0:01 eV. As for the band
filling (number of electrons/site), we concentrate on the
total n ¼ 2:85, for which the main band has 0.85. Here we
apply the multiorbital FLEX, as described, e.g., in
Ref. [22], for the three-dimensional lattice taking 32�
32� 4 k-point meshes and 1024 Matsubara frequencies.
We first focus on the La system, and investigate how the dz2
orbital affects superconductivity. Namely, while the on-site
energy difference, �E � Ex2�y2 � Ez2 , between the two

orbitals is�E ’ 0:9 eV for La2CuO4 (Table I), we vary the
value to probe how the Eliashberg eigenvalue � for d-wave
superconductivity behaves. The result in Fig. 3 shows that
� is small for the original value of �E, but rapidly in-
creases with�E, until it saturates for sufficiently large�E.
Hence the superconductivity turns out to be enhanced as
the dz2 band moves away from the main band. Note that

this occurs despite the Fermi surface becoming more
rounded with larger �E, namely, the effect of the orbital
character (smaller dz2 contribution) dominates over the

Fermi surface shape effect. Conversely, the strong dz2
character in the Fermi surface around (�, 0), (0, �) works
destructively against d-wave superconductivity. Physi-

FIG. 1 (color online). FLEX result for the eigenvalue � of the
Eliashberg equation for the single-band Hubbard model plotted
as a function of ðjt2j þ jt3jÞ=jt1j, where we take t2 ¼ �t3 > 0
for U ¼ 6jt1j, T ¼ 0:03jt1j, and the band filling n ¼ 0:85. Fermi
surfaces are displayed for two cases (indicated by arrows).

FIG. 2 (color online). The band structure in the two (dx2�y2 �
dz2 ) orbital model for La2CuO4 (left) and HgBa2CuO4 (right).

The top (bottom) panels depict the strength of the dx2�y2 (dz2 )

characters with thickened lines, while the lower insets depict the
Fermi surfaces (for a total band filling n ¼ 2:85). The upper
inset shows the band structure of the three-orbital model (see
text) for La system, where the 4s character is indicated.
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cally, the reason for this may be explained as follows. First,
although the La system has a better nested Fermi surface,
we find that the strength of the antiferromagnetic spin
fluctuations (the spin susceptibility obtained in FLEX) in
La is only as large as that for Hg. This is intuitively
understandable, since the two electrons on nearest-
neighbor sites are less constrained to have antiparallel
spins in order to gain kinetic energy when two orbitals
are active as in La. Second, d-wave pairing has a rough
tendency for higher Tc in bands that are nearly half filled,
whereas the dz2 orbital here is nearly full filled.

We now focus on how the lattice structure affects �E
and hence superconductivity. This is motivated by the fact
that �E should be controlled by the ligand field, hence by
the height, hO, of the apical oxygen above the CuO2 plane
[14]. To single out this effect, let us examine the two-
orbital model for which we increase hO from its origi-
nal value 2.41 Å with other lattice parameters fixed. In
Fig. 4(a), which plots the eigenvalue of the Eliashberg
equation as a function of hO, we can see that � monotoni-
cally increases with the height. As seen from the inset of
Fig. 4(b), �E is positively correlated with hO as expected,
and Fig. 4(b) confirms that the increase in � is due to the
increase in �E [23]. In these figures, we have also plotted
the values corresponding to the Hg system obtained with

the actual lattice structure. We can see that, while hO ’
2:8 �A for Hg is larger than hO ’ 2:4 �A for La, �E ’
2:2 eV for Hg is even larger than �E ’ 1:3 eV, which is

the value the La system would take for hO ¼ 2:8 �A.
Consequently, � for Hg is somewhat larger than that for
the La system with the same value of hO. This implies that
there are some effects other than the apical oxygen height
that also enhance �E in the Hg system, thereby further fa-
voring d-wave superconductivity. In this context, the pres-
ent result reminds us of the so-called ‘‘Maekawa’s plot,’’
where a positive correlation between Tc and the level of the
apical oxygen pz hole was observed [24]. Since a higher pz

hole level (i.e., a lower pz electron level) is likely to lower
Ez2 , the positive correlation between�E and Tc found here

is indeed consistent with Maekawa’s plot. It can be con-
sidered that in La cuprates, a considerable portion of the
doped holes go into the apical oxygen pz, and this effect is
effectively taken into account in our model. A more de-
tailed study on these issues is now under way, and will be
discussed in a separate publication.
Finally, let us discuss the effect of Cu 4s orbital, which is

the main component of the ‘‘axial state’’ discussed in
Refs. [3,16]. In the present two-orbital model the 4s orbital
is effectively incorporated in both of the dx2�y2 and dz2

orbitals; i.e., the Wannier orbitals have tails that have the
4s character. In order to make the examination more direct,
we now consider a three-orbital model that explicitly con-
siders the 4s orbital. The band dispersion for the La system
shown in the upper inset of Fig. 2 shows that the 4s band
lies well (’7 eV) above the Fermi level. Nonetheless, the
4s orbital gives an important contribution to the Fermi
surface in that the ratio ðjt2j þ jt3jÞ=jt1j within the dx2�y2

sector in the three-orbital model takes a much smaller
value of 0.10, which should imply that it is the path
dx2�y2 ! 4s ! dx2�y2 that gives the effectively large t2,

t3, and hence the round Fermi surface, as pointed out
previously [3,16]. In this context, it is worth mentioning
that the path dx2�y2 ! dz2 ! dx2�y2 also contributes to t2,

t3, but has an opposite sign to the 4s contribution because
the dz2 level lies below dx2�y2 , while 4s above dx2�y2 [25].

So the two contributions to the main band cancel with each
other, where the cancellation should be strong when the
energy of the dz2 orbital is high as in La.

We now apply FLEX to the three-orbital model varying
�E ¼ Ex2�y2 � Ez2 as in the two-orbital model, where we

fix the on-site energy difference E4s � Ez2 at its original

value. We have chosen this because a similar three-orbital
model constructed for Hg (not shown) shows that the on-
site energy difference between the 4s and dx2�y2 orbitals is

smaller than in the La system by about 1 eV, so in the Hg
system, both of Ex2�y2 � Ez2 and E4s � Ex2�y2 are smaller

by about 1 eV, which means that the dz2 and 4s levels shift
roughly in parallel relative to dx2�y2 . It can be seen in Fig. 3

FIG. 3 (color online). The eigenvalue � of the Eliashberg
equation for d-wave superconductivity is plotted against �E ¼
Ex2�y2 � Ez2 for the two-orbital (circles) or three-orbital (tri-

angles) models for La2CuO4. Corresponding eigenvalues for
HgBa2CuO4 are also indicated.
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FIG. 4 (color online). The eigenvalue of the Eliashberg equa-
tion � (circles) when hO (a) or �E (b) is varied hypothetically in
the lattice structure of La2CuO4. The diamond indicates the
eigenvalue of HgBa2CuO4. The inset in (b) shows the relation
between hO and �E.
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that the �E dependence of � in the three-orbital model
resembles that of the two-orbital model in the realistic �E
range. (When �E becomes unrealistically large, i.e., when
4s level is too close to the Fermi level, the Fermi surface
becomes too deformed for superconductivity to be re-
tained.) We have also calculated the eigenvalue for the
Hg system in the three-orbital model, and obtained a value
very similar to that obtained in the two-orbital model, as
plotted in Fig. 3. If we summarize the three-orbital results,
while the 4s orbital has an important effect on the shape of
the Fermi surface, this can be effectively included in the
dx2�y2 and dz2 Wannier orbitals in the two-orbital model as

far as the FLEX studies are concerned. This contrasts with
the case of the dz2 orbital, which, if effectively included in

the dx2�y2 Wannier orbital to construct a single-orbital

model, would result in a different result. This conclusion
is natural, since the energy difference (’1 eV) between
dx2�y2 and dz2 orbitals in the La system is smaller than the

electron-electron interaction, which is why the dz2 orbital
has to be explicitly considered in a many-body analysis,
while the energy difference (’7 eV) between dx2�y2 and 4s

orbitals is much larger than the electron-electron interac-
tion, so that the 4s orbital can effectively be integrated out
before the many-body analysis. So the message here is that
the two-orbital (dx2�y2 � dz2) model suffices to discuss the

material dependence of the Tc in the cuprates. Whether the
effect of the dz2 orbital can be further incorporated in the

on-site U or off-site V values (i.e., material-dependent
interaction values) in an effective, single-band model is a
future problem.

To summarize, we have introduced a two-orbital model
to understand the material dependence of Tc in the cup-
rates. We have shown that the key parameter is the energy
difference between the dx2�y2 and dz2 orbitals, where the

smaller the contribution of the dz2 orbital, the better for

d-wave superconductivity, with the orbital-character effect
superseding the effect of the Fermi surface shape. It is
intriguing to note that the two high Tc families, cuprates
and iron pnictides, exhibit material dependence of Tc that,
according to the present study and Ref. [26], owes to the
material dependent multiorbital band structures.

In the present view, the Hg cuprate is ‘‘ideal’’ in that the
dz2 band lies far below the Fermi level. Nevertheless, there

is still room for improvement: as mentioned in the outset,
within single-orbital systems higher Tc can be obtained for
smaller t2 and t3. It may be difficult to make t2 and t3
smaller in the cuprates, since they are intrinsically large as
far as the Cu 4s orbital is effective. Conversely, we can
predict that materials with an isolated single band that has
smaller t2 and t3 should accommodate even higher Tc than
the Hg cuprate, provided that the electron interaction is
similar to those in the cuprates.
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