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An exact statistical mechanical derivation is given of the critical Casimir forces for Ising strips with

arbitrary surface fields applied to edges. Our results show that the strength as well as the sign of the force

can be controlled by varying the temperature or the fields. An interpretation of the results is given in terms

of a linked cluster expansion. This suggests a systematic approach for deriving the critical Casimir force

which can be used in more general models.
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Casimir forces [1] arise in the quantum electrodynamics
of confined systems, e.g., between two metal plates
in vacuo, because the photon spectrum is modified; typi-
cally the force is attractive. Fisher and de Gennes [2]
proposed that analogous Casimir forces should arise in
condensed matter systems near a second-order phase tran-
sition, the agent being thermally excited fluctuations of the
order parameter such as the density. Of particular interest is
their scaling-theoretic prediction that such interactions
should have a power law dependence on distance in the
critical scaling region. For films of thickness N, the
Casimir force per unit area is F Cas ¼ �N�d#ðN=�Þ,
where � is the bulk correlation length and d is the spatial
dimension [2–4]. (All free energies and forces are ex-
pressed in units of kBT.) The scaling function # depends
on the universality class (UC) of a system and on the
boundary conditions imposed by walls on the order pa-
rameter. # was successfully measured for wetting films of
helium (XY UC) [5] and of classical binary liquid mixtures
(Ising UC) [6]. Recent experimental and theoretical studies
show that at the submicron scale the critical Casimir force
can compete successfully with other types of interactions,
e.g., dispersion or (screened) electrostatic forces, in deter-
mining the properties of soft matter systems such as col-
loidal suspensions, liquid crystals, or fluid membranes [7].
The control of critical Casimir interactions will be crucial
for many applications, e.g., in manipulating colloidal sys-
tems [8–10] or in various micro- or nanoelectromechanical
devices, in particular, to be able to produce repulsive
interactions to counteract the omnipresent attractive
Casimir quantum electrodynamical force. For experimen-
tal systems belonging to the Ising UC, critical Casimir
forces can be adjusted by changing temperature or bound-
ary conditions [11]. Further, complex fluids such as liquid
crystals offer more such possibilities due to the interplay
between many relevant order parameters [12]. In this
Letter, we derive exact partition functions for the planar
Ising ferromagnet which allow the desired tunability.
Second, we interpret these results as a linked cluster ex-

pansion and then indicate why it might be appropriate for
more general models.
If the system is confined to a film, one would expect on

intuitive grounds that the geometrical effect on the order
parameter fluctuations of the strip boundaries would be to
reduce the entropy, thereby establishing a strictly repulsive
force. This argument is misleading, because certain aspects
of the wall interactions are neglected. The first results [13]
were for the strip with zero bulk field and either free
boundary condition or fixed boundary spins, both the
þþ and þ� conditions. With þþ and the free boundary
conditions, we get attraction, but with þ� boundary con-
ditions we get repulsion. Such results do not afford the
desired tunability by varying parameters, but this becomes
possible in a simple extension of the planar Ising model.
Regarding this as a realization of a binary mixture (say), if
the molecules are confined to lie in a channel, or strip, or in
a membrane between two protein inclusions [14], then the
energetic effects of the boundary can be approximated by
surface fields or differential fugacities, as in the discussion
of wetting. In addition, since electrodynamical properties

FIG. 1 (color online). Illustration of our model for
(a) h1h2 > 0 and (b) h1h2 < 0. We are interested in the limit
M ! 1 with N <1. The lower boundary in (b) introduces a
Peierls contour from ð1; 0Þ to ð1; sþ 1Þ.
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of the fluid in the strip and the medium composing the
walls are different, we might also include modified bonds
at the surface. In this Letter, we will confine ourselves to
the first case of surface fields. Our model is illustrated in
Fig. 1.

The technique described in Ref. [15] allows us to calcu-
late the partition function of a cylindrical lattice with
circumference M, height N, with its axis in the ð0; 1Þ
direction, and end fields hj > 0, j ¼ 1; 2, in a straightfor-

ward way. The fields are introduced by taking a free-edged
cyclic strip and adding an extra ring of spins at each end;
these spins are forced to take the value þ1. These fixed
spins are then coupled to the free lattice by bonds of
strength h1 at the bottom and h2 at the top. A different
technique, which is a finite version of the pinning-
depinning, or wetting exact solution [16], is needed if
h1h2 < 0, as will be seen. The Casimir free energy for a
lattice with integer coordinates at arbitrary temperature is

f� ¼ �
Z �

��

d!

4�
ln½1þ gð!Þe�2N�ð!Þ�; (1)

where g¼d�ð!ÞA1A2 with d
�ð!Þ ¼ ½1� cos��ð!Þ�=½1þ

cos��ð!Þ� and �ð!Þ (the Onsager function [17]) is the non-
negative solution of cosh�ð!Þ ¼ cosh2K2 cosh2K

�
1 �

sinh2K2 sinh2K
�
1 cos! for real !. (For clarity, in the fol-

lowing we will drop the explicit dependence on the argu-
ment of g and �.) The function ��ð!Þ is given by

ei�
�ð!Þ ¼ ½ðz� AÞðBz� 1Þ=ðAz� 1Þðz� BÞ�1=2, where

z ¼ ei!, A ¼ exp2ðK1 þ K�
2Þ, and B ¼ exp2ðK1 � K�

2Þ.
K1 and K2 are the nearest neighbor couplings in the ð0; 1Þ
and ð1; 0Þ direction, respectively. K� is the dual coupling
given by the involution sinhð2KÞ sinhð2K�Þ ¼ 1. Aj ¼
ðe�� � wjÞ=ðe� � wjÞ, j ¼ 1; 2. The values w1 and w2

which are the wetting parameters for the force are given
by [16] wj ¼ e2K2ðcosh2K1 � cosh2hjÞ= sinh2K1. It is

crucial to note that Aj can take both positive and negative

values; this is why either sign of the Casimir force is
possible in principle. þþ boundaries are obtained as a
special case for wj ¼ 0, j ¼ 1; 2, which gives g ¼ d�. For
free boundary conditions g ¼ d0ð!Þ defined by replacing
�� by �0; �0 has K2 and K

�
1 interchanged, which means that

B�1 is replaced by B. This equivalence also follows from
duality [15]. The Casimir force per unit length in the ð1; 0Þ
direction as M ! 1 has the form

F CasðN; TÞ ¼ �
Z �

��

d!

2�

�

½1þ g�1e2N�� : (2)

Taking the scaling limit of (2), N ! 1, �ð0Þ ¼
K2 � K�

1 ! 0 such that x ¼ N�ð0ÞsgnðT � TcÞ is fixed
[as t � ðT � TcÞ=Tc ! 0, K2 � K�

1 ’ �4Kct] and N! ¼
u, one obtains F Casðh1; h2; N; TÞ ¼ N�2#þðrÞ, with

#þðrÞ ¼ � 1

�

Z 1

0

du�ðx; uÞ
X�ð0Þ
Xþð0Þ

Xþ
1 X

þ
2

X�
1 X

�
2
e2�ðx;uÞ þ 1

; (3)

where r ¼ ðx; y1; y2Þ with yj ¼ h2jN, �ðx; uÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ u2

p
,

and X�ðyÞ ¼ �ðx; uÞ � ðx� 2e2KcyÞ, X�
j ¼ X�ðyjÞ, j ¼

1; 2. [For T < Tc, �ð0Þ is the surface tension in the ð0; 1Þ
direction of the 2D Ising model; it is the inverse correlation
length for T > Tc.] At x ¼ 0, (3) reduces to the universal
Casimir amplitude, which equals ��=48 for both hj ¼ 0

and hj ¼ 1. Interesting examples of the scaling function

#þðrÞ, which demonstrate that the critical Casimir forces
can switch from attraction to repulsion by varying the
temperature, are shown in Figs. 2 and 3. They were eval-
uated numerically from (3) for several choices of the
scaling variables y1;2. The case with h1h2 < 0 can be

approached from that with h1h2 > 0 by reversing the end
spins between x ¼ 1 and x ¼ sþ 1 on one face of the
cylinder, as shown in Fig. 1, thereby creating an interface
with terminations in the same face. This is followed by
taking the limit as M ! 1, as before. With hj > 0, j ¼
1; 2, we find the ratio of partition functions for strips with
and without the interface to be

fðsÞ ¼ �i

s
ln
Z �

��

d!

2�

eis! tanð��
2 ÞðBþ � B�A2e

�2N�Þ
1þ A1A2e

�2N�
;

(4)

where B� ¼ ðe�� � e�4K2w1Þ=ðe� � w1Þ. If we think in
the Peierls contour mode, we see that (4) can be used to
define an incremental free energy associated with the
dressed long contour intersecting the boundary as in
Fig. 1. We are interested in the limit as s ! 1 of (4) per
unit length. The asymptotics for large s is dominated by the
nearest singularity to the real axis in the strip ��<! �
�. The branch cuts associated with sinh� do not occur, and
poles are simple zeros of the denominator of (4).
Fortunately, the problem can be related to the diagonaliza-
tion problem of the transfer matrix in the direction ð1; 0Þ
[18] [here we are transferring in the ð0; 1Þ direction] by
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FIG. 2 (color online). The scaling function #þðx; y1; y2Þ of the
critical Casimir force (3) for the isotropic lattice with K1 ¼ K2,
x ¼ N�ð0ÞsgnðT � TcÞ, and y1 ¼ h21N ¼ 1 and for the several

values of y2 ¼ h22N.
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looking for the solution in the variable k such that ! ¼
i�̂ðkÞ and lim�!0þ�½i�̂ðkÞ � �� ¼ �ik, where the function
�̂ðkÞ is defined as the Onsager function, but withK1 andK2

interchanged. Then finding zeros of the denominator of (4)
becomes equivalent to solving the spectrum discretization
condition for the strip transfer matrix in the ð1; 0Þ direction,
which was studied in detail in Ref. [18]:

e2iðNþ1Þk ¼ e2i�̂
0ðkÞ e

ikw1 � 1

eik � w1

eikw2 � 1

eik � w2

: (5)

ei�̂
0ðkÞ is obtained from ei�

0ðkÞ by interchanging K1 and K2.
In the scaling limit we find f� ¼ ð1=NÞ�ðx; u0Þ. Hence the
solution for the Casimir scaling function #�ðrÞ ¼
#�ðrÞ þ #þðrÞ has the implicit form with

#�ðrÞ ¼ u20 � u0r 	 ru0
N2�ðx; u0Þ

; (6)

where u0ðrÞ solves the quantization condition (5) in the
scaling limit

e2iu ¼ �Zþð0Þ
Z�ð0Þ

Z�
1 Z

�
2

Zþ
1 Z

þ
2

; (7)

where Z�
j ¼ Z�ðyjÞ, j ¼ 1; 2, is derived from X�ðyÞ by

replacing �ðx; uÞ by iu. The derivatives of u0 can be
calculated straightforwardly from (7). In Figs. 4 and 5,
we plot #� as a function of x evaluated numerically for
some choices of the scaling variables y1 and y2. Our results
for the special case of y1 ¼ y2 agree with those reported in
Ref. [19]; the change of sign of the scaling function #� is
associated with the localization-delocalization transition
[16,20]. This feature remains for a slightly broken symme-
try, i.e., for y1 
 y2 and y1;2 small. For strongly asymmet-

ric strips, the excess scaling function of the critical Casimir
force is always positive.

We now interpret (1) in terms of statistical mechanical
ideas. Expanding the integrand gives

f� ¼ X1
n¼1

ð�1Þnþ1

n

Z �

��

d!

4�
e�2Nn�ðC1C2Þn; (8)

where Cjð!Þ ¼ ðA�
j =A

þ
j Þ tanð��=2Þ, j ¼ 1; 2. Although

this is not immediately apparent, this is in fact a linked
cluster expansion as we now show. Equation (8) can be
understood by going back to the partition function formula
in terms of a transfer matrix V: Z ¼ hb1jVNjb2i, where jbji
describes the edge state with field hj, j ¼ 1; 2. Instead of

using the technique described in Ref. [15], this can be
developed by expanding with basis of eigenvectors of V
giving

Z

�N
max

¼ X1
n¼0

X
ð!Þ2n

e�N
P

2n
k¼1

�ð!kÞ

ð2nÞ! hb1jð!Þ2nihð!Þ2njb2i; (9)

where jð!Þ2ni denotes a 2n-fermion eigenstate of V. This
would certainly not be the chosen way of obtaining (1),
since we would need to evaluate the matrix elements
hb1jð!Þ2ni and hð!Þ2njb2i; this has been done with some
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FIG. 5 (color online). The same as in Fig. 4 but for y1 ¼
h21N ¼ 1.
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FIG. 3 (color online). The same as in Fig. 2 but with y1 ¼
h21N ¼ 0.
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FIG. 4 (color online). The excess scaling function
#�ðx; y1; y2Þ of the critical Casimir force (6) for the isotropic
lattice with K1 ¼ K2 and y1 ¼ h21N ¼ 1 and for the several

values of y2 ¼ h22N.
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effort, and the result is typically Wick-theoretic in form:

hbjjð!Þ2ni ¼
X2n
m¼2

ð�1Þmfjð!1; !mÞhbjj�1mð!Þ2ni; (10)

where �1mð!Þ2n ¼ ð!2; . . . ; !m�1; !mþ1; . . . ; !2nÞ and
fjð!1; !2Þ ¼ iCjð!Þ�!1;�!2

is the contraction function

or, alternatively, a scattering matrix element for a pair of
fermions off the wall described by jbji. Notice that, since
the A�

j are even but tan12�
� is odd, the contraction is

antisymmetric as it should be for fermions. Thus, (10) is
a Pfaffian. The graphical representation of (9) and (10) is
discussed in Ref. [21]. For each n we have a weighted sum
of disjoint loops, each having an even number of vertices,
the vertex weight Cjð!Þ, and the Kronecker delta edge

weight. The occurrence of the Kronecker delta in the
contraction function is mandated by translational symme-
try. Thus, the multiple sum for each loop becomes just a
single sum on implementing the deltas. Asymptotically as
M ! 1, each such sum is to leading orderM times a single
integral. We can now apply the linked cluster theorem to
exponentiate (9). Equation (8) is recaptured for the excess
free energy per unit length in the ð1; 0Þ direction, since the
factor of 1=n in (8) comes directly from a symmetry
number argument. Each term is then to be thought of as a
weight of a ‘‘loop’’ with 2n vertices. The loop is reflected n
times off the upper boundary and n times off the lower
boundary, with ‘‘momentum’’ conservation at each reflec-
tion; thus n may be thought of as a topological quantum
number. Starting from the partition function (9) and (10),
we have rederived (8), in a way which allows us to identify
the multiplier of expð�2N�Þ in (1) as a product of two
scattering matrix elements, one from each edge. Clearly, �
in (9) is a fermion energy. Thus we have a complete
intuitive understanding of (1). We can take the scaling
limit either in (8) or (2) (as we have already done) with
the same outcome. This procedure even converges after
taking T ! Tc in either (8) or (2), since then �ð!Þ / j!j.

Two approximation schemes are in order. First, we could
consider how well partial sums of the virial series (8)
approximate the exact result, so that we can assess the
contribution of the different reflection number sectors to
the result. Second, in the scaling limit the one-particle
energy should be universal. The same is not likely to be
true for the scattering matrix elements. Correlation droplet
theory [22] provides an approximate method for calculat-
ing them and thus for extending the scope of our results.

In this Letter, we have described exact results for the
critical Casimir force in a planar, rectangular Ising ferro-
magnet with applied fields h1 and h2 on the edges. Each
field can have arbitrary sign and magnitude. Both with
h1h2 > 0 and with h1h2 < 0, we show that the force can

be attractive or repulsive, according to the tuning of the
parameters. The compensation of attractive, quantum van
der Waals forces which this will allow has implications
which may well prove crucial for applications. Mean field
calculations are in qualitative agreement with our results
[23]. There are also related field-theoretic results [24]. We
interpret the representation of the Casimir force as in (1)
and (8) in terms of the linked cluster expansion. This
suggest an associated droplet picture which enhances the
original finite size scaling ideas of Privman and Fisher [25]
in this context; this will also give new, systematic approx-
imations for calculating critical Casimir forces in planar
systems and perhaps even in d ¼ 3.
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