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The existence of plasma oscillations at multiples of the magnetoplasmon frequency in a strongly

coupled two-dimensional magnetized Yukawa plasma is reported, based on extensive molecular dynamics

simulations. These modes are the analogues of Bernstein modes which are renormalized by strong

interparticle correlations. Their properties are theoretically explained by a dielectric function incorporat-

ing the combined effect of a magnetic field, strong correlations and finite temperature.

DOI: 10.1103/PhysRevLett.105.055002 PACS numbers: 52.27.Gr, 52.27.Lw

Two-dimensional (2D) systems with strong correlations,
i.e., with the interaction energy exceeding the thermal
energy, show a number of unusual properties ranging
from anomalous phase transitions (Kosterlitz-Thouless
scenario) to anomalous transport [1,2]. Examples include
electrons on helium droplets and in quantum dots [3], ions
in traps [4], and dusty plasmas [5–7]. A particular corre-
lation effect is observed in the collective oscillation spec-
trum of 2D Coulomb and Yukawa liquids [5,8,9] where a
transverse shear mode has been predicted by Kalman and
Golden [10,11]. This mode does not exist in an ideal
system but has experimentally been observed in strongly
coupled systems [12,13]. Similarly, in the presence of a
strong magnetic field a 2D plasma shows two coupled
modes—a magnetoplasmon and a magentoshear mode
(upper and lower hybrid modes), which have recently
been studied in detail in the liquid and crystal phases
[6,8,9].

Here we show that a strongly correlated 2D Yukawa
plasma (2DYP) possesses additional collective modes.
We demonstrate that these are related to Bernstein modes
(BMs) [14] which are well known in high-temperature
classical [15,16] and quantum plasmas [17,18]. However,
these are all nearly ideal plasmas. Here we demonstrate
that such modes can also exist in strongly correlated sys-
tems, but they have a number of peculiar properties arising
from the combined effect of correlations and the magnetic
field.

Model and simulation method.—Our 2DYP consists of
N particles in a quadratic monolayer (with periodic bound-
ary conditions), subject to a magnetic field perpendicular to
the plane and interacting by Yukawa forces. The coupled
Newton’s equations are (i ¼ 1; . . . ; N)
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with the Debye screening length �D and chargeQ. Here we

define the Wigner-Seitz radius a ¼ ðn0�Þ�1=2 (where n0 is

the areal density) and the frequency !0 ¼

ð2�Q2n0=maÞ1=2, to be distinguished from the
k-dependent 2D analogon of the plasma frequency,

!pðkÞ ¼ ½2�Q2n0k
2=ðm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ �2

p
Þ�1=2. In thermodynamic

equilibrium, the system is fully characterized by three
parameters—the dimensionless inverse screening length
� ¼ a=�D, the Coulomb coupling parameter � ¼
Q2=ðakBTÞ, and the dimensionless magnetic field strength
� ¼ !c=!0, with the cyclotron frequency !c ¼ QB=mc.
Equation (1) is solved by a microcanonical molecular
dynamics (MD) method which incorporates an arbitrarily
strong static homogeneous magnetic field into the second-
order velocity Verlet algorithm [19]. Data acquisition starts
after the system has equilibrated to the desired temperature
(�). The longitudinal and transverse collective excitation
spectra, Lðk;!Þ and Tðk;!Þ, respectively, are computed
from the microscopic longitudinal and transverse current
fluctuations [20]. Here we use N ¼ 4080 particles and
cover a broad parameter range with 1 � � � 3, 10 � � �
1000, and 0:01 � � � 1:4.
Numerical results.—A first overview of the simulation

results is given in Fig. 1 showing the evolution of the
collective oscillation spectrum with the coupling parame-
ter � at a fixed field strength � ¼ 0:5. At low wave
numbers k, one clearly observes two peaks, one of which
starts at! ¼ !c ¼ 0:5 and a second at very low frequency.
When � is increased [cf. Figs. 1(a)–1(c)], the peaks be-
come more pronounced and extend to higher k. These are
the well-known magnetoplasmon (MP) and magnetoshear
modes—the latter being a pure correlation effect as noted
above [10]. When the coupling is increased beyond the
crystallization point (when the system transforms into a
microcrystalline structure in our simulation) [cf. Fig. 1(d)],
the modes transform into the magnetophonon spectrum
[6,9]. The properties of these two modes are well described
within the quasilocalized charge approximation (QLCA)
and harmonic lattice theory and very well agree with MD
simulations; thus it appears that the collective excitations
of strongly correlated Coulomb and Yukawa systems are
fully understood.
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However, this is not the case. Let us look at frequencies
above the MP. For � ¼ 80 [Fig. 1(b)], a third maximum
appears in the spectrum around 1:3!0, starting at a wave
number of about ka ¼ 1:5. This peak is very broad and
strongly overlaps with the MP. An analysis of the spectrum
for � ¼ 200 and 1000 reveals that this peak exists there as
well—it is now more clearly separated from the MP; cf.
Figs. 1(c) and 1(d). To explore the origin of this peak, we
have performed a series of simulations for a broad range of
field strengths, coupling parameters, and screening pa-
rameters. All the results confirm the appearance of not
just one peak but of a whole series of additional collec-
tive modes. Some representative results are collected in
Figs. 2 and 3. Both figures clearly show up to four addi-
tional plasmon modes, which are equally spaced, where the
spacing increases with B.

These additional peaks and their monotonic dependence
on the cyclotron frequency strongly resemble Bernstein
modes [14]. Furthermore, the coincidence of longitudinal
and transverse current fluctuation spectra (cf. Fig. 2, top
row) clearly confirms the circular polarization. In fact,
electrostatic modes with frequencies around multiples of
!c are well known in many ideal classical and quantum
plasmas; see above. But here they are observed, for the first

time, in a strongly coupled system. Note that neither cold
fluid theory nor the QLCA have revealed such modes
because they neglect finite temperature effects, which
are crucial for the excitation of the harmonics; see below.
We, therefore, develop a kinetic theory of a magnetized
plasma at finite temperature which incorporates strong
correlations.
Theory.—We start from the retarded longitudinal dielec-

tric function �l of a one-component correlated plasma in a
magnetic field [21]:

�lð!; kÞ ¼ kikj

k2
�ijð!; kÞ ¼ 1� VðkÞ�lð!; kÞ; (2)

where �ij is the dielectric tensor and VðkÞ ¼ 2�Q2=ðk2 þ
�2Þ1=2 is the Fourier transform of the 2D Yukawa potential
(our results include the Coulomb case, for � ! 0). The
longitudinal polarization�l contains all interaction effects
and can be expressed through the uncorrelated (Vlasov or
RPA) polarization�l

0 via the Bethe-Salpeter equation [22]

or via

�lð!; k;BÞ ¼ �l
0ð!; k;BÞ

1þ VðkÞ�l
0ð!; k;BÞGðk;!;BÞ ; (3)

whereGðk;!;BÞ is the so-called local field correction [23].
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FIG. 1 (color). Collective excitation spectrum Lðk;!Þ þ
Tðk;!Þ of a Yukawa plasma with � ¼ 2 and � ¼ 0:5, for four
values of the coupling parameter given in the figure. The
amplitudes of the spectra are normalized by their peak values.
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FIG. 2 (color online). (a),(c),(d) Longitudinal magneto-
oscillation spectrum Lðk;!Þ of a Yukawa plasma with � ¼ 2
for various field strengths and coupling parameters.
(b) Transverse spectrum Tðk;!Þ for the parameters of (a). The
lines are vertically offset for better visibility.
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However, G is known only approximately; results for the
electron gas have been given, e.g., by Singwi et al. [23].
For a strongly correlated plasma, Kalman and Golden
observed [11] that the collective modes in the cold fluid
description are well reproduced by a static approximation
of (3) in which the magnetic field is neglected:
Gðk;!;BÞ � �DðkÞ=!2

pðkÞ, where D is the dynamical

matrix of QLCA (a functional of the pair distribution
function) [10]. Here we extend this concept to finite tem-
peratures and to the BMs. To this end we compute the
Vlasov polarization �l

0ð!; k;BÞ of a 2D Maxwellian

plasma with Yukawa interaction in a magnetic field, which
is analogous to the quantum RPA result [17]:

�l
0ð!; k;BÞ ¼ 2n0

kBT
e�z

X1

n¼1

n2!2
c

!2 � ðn!cÞ2
InðzÞ; (4)

where In denotes the modified Bessel function, z ¼
ðkvT=!cÞ2, and v2

T ¼ kBT=m is the square of the thermal
velocity. By using this result and Eqs. (2) and (3), the
dispersion relation of the longitudinal modes is obtained
from �lð!; k;BÞ ¼ 0:

0 ¼ 1� 2 ~!2
pðkÞ e

�z

z

X1

n¼1

n2

!2 � ðn!cÞ2
InðzÞ; (5)

where ~!2
pðkÞ ¼ !2

pðkÞ þDðkÞ, and we use the approxima-

tion DðkÞ ¼ DLðkÞ þDTðkÞ. Equation (5) can be further
simplified by noticing that z ¼ ðkaÞ2=ð2�2�Þ � 1 for the
situations of interest. For example, for� ¼ 1 and � ¼ 200,
as in Fig. 3(c), z � 0:16, up to ka ¼ 8. Then, by using
InðzÞ � ðz=2Þn=n!, Eq. (5) yields the coupledMP and BMs,
which are modified by correlations. Approximately we
find, for the MP, the well-known dispersion

!2
1ðkÞ � !2

c þ ~!2
pðkÞ; (6)

and, additionally, for the BMs (n � 2), the frequencies

!2
nðkÞ � ðn!cÞ2 þ ½n ~!pðkÞ�2 1

n!

�
z

2

�
n�1

: (7)

The latter are found to be undamped and to exist in the
entire wave number range with frequencies rather close to
the simulation results (note that since z � 1 the second
contribution to !n is negligible for the shown parameters);
cf. Figs. 3(d) and 3(h). This clearly confirms our interpre-
tation in terms of Bernstein modes.
However, a closer inspection of the simulation data

reveals three qualitative differences: (i) All BMs are
damped; (ii) they exist only beyond a finite wave number

kðnÞcr which increases with n; (iii) the BMs are not spaced by
!c but by a different frequency; cf. Figs. 3(b) and 3(f). In
fact, we find that the frequencies are very well described by
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FIG. 3 (color). MD collective excitation spectra Lðk; !Þ þ Tðk;!Þ (color) vs theoretical dispersions [Eqs. (6) and (8)] based on the
corrected polarization ~�l

0 (black and white lines). Left column: � ¼ 200; right column: � ¼ 150 (upper two figures) and � ¼ 600
(lower two figures). Note that frequencies are scaled in units of !c.
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!2
nðkÞ � n2!2

1;1; !2
1;1 ¼ !2

c þ 2!2
E; (8)

where !1;1 is the large k asymptotic of the MP (6) and !E

is the Einstein frequency describing the average oscillation
frequency of a test particle in the frozen environment of the
other particles. The surprising absence of any wave number
dispersion in the numerical results (cf. Figs. 2 and 3)
suggests that BM excitation is governed by processes on
the smallest length scale of single particles. In fact, in a
strongly correlated plasma, particles are trapped in instan-
taneous local potential minima created by all other par-
ticles [24]. The trajectories of these randomly oscillating
particles are ‘‘bent’’ by the Lorentz force onto cyclotron
orbits around the magnetic field direction giving rise to an
average gyration frequency !1;1. In the presence of ther-

mal fluctuations, nonlinear energy exchange with short
wavelength magnetoplasmons leads to particle gyration
with frequencies n!1;1, connected with plasmon emission

of these harmonics. Thus, the observed oscillations are
‘‘dressed Bernstein modes’’ arising from a combined effect
of magnetic field and strong correlations which increases
the fundamental frequency from !c to !1;1.

It is straightforward to present a corrected polarization
~�l
0ð!̂; k;BÞ which reproduces all the above effects. The

main difference, compared to Eq. (4), is that the denomi-
nators of the terms n � 2 are of the form [25] !̂!�
ðn!1;1Þ2, which yields the correct BM dispersion (8).

Further, by introducing a phenomenological damping con-
stant � > 0, with !̂ ¼ !þ i�, it is possible to correctly
reproduce the damping of the BMs and the finite k values at
which they emerge. This damping emulates collisional
dissipation effects, which are missing in the Vlasov theory
and in the QLCA but are present in the simulations.
Replacing, in the dispersion relation (5), �l

0ð!; k;BÞ by
~�l
0ð!̂; k;BÞ yields, for the critical wave number of the nth

BM, kðnÞcr a ¼ 2��1=2½ðn� 1Þ!!1;1�=!2
E�1=ð2n�2Þ. Using �

as a free parameter allows us to reproduce the finite values

kðnÞcr and their increase with n observed in the simulations,
as is shown by the dashed white lines in Fig. 3. We under-
line that this agreement is representative for magnetized
2DYP in the strongly coupled liquid and crystal phases,
which is supported by additional results for different
screenings; see the right column of Fig. 3.

In summary, we have demonstrated that a strongly cor-
related 2DYP possesses, in addition to the well-known
magnetoplasmon and magnetoshear modes, a sequence of
Bernstein-type modes. In contrast to the familiar situation
of weakly nonideal high-temperature classical and low-
temperature quantum plasmas where the BMs appear at
multiples of !c, in a correlated plasma the modes are
renormalized by correlations and appear at harmonics of

the correlated MP frequency ð!2
c þ 2!2

EÞ1=2. It is the com-
bined effect of correlations and magnetic field which yields
the strong harmonics signal with the frequencies (8) re-
ported in this Letter [26]. The predicted dressed Bernstein

modes should be observable, for example, in trapped ions,
nonideal electron-hole plasmas in quantum wells, and
dusty plasmas. Using, e.g., dust particles of 0:5 �m di-
ameter and a magnetic field of 20 T gives rise to a strongly
coupled weakly magnetized liquid state with �� 100 and
�� 0:1, which should allow for resonant detection of
mode n ¼ 2.
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