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We show the existence of two-state on-off intermittent behavior in spatially extended dynamical
systems, using as an example the damped and forced drift wave equation. The two states are stationary
solutions corresponding to different wave energies. In the language of (Fourier-mode) phase space these
states are embedded in two invariant manifolds that become transversely unstable in the regime where
two-state on-off intermittency sets in. The distribution of laminar duration sizes is compatible with the
similar phenomenon occurring in time only in the presence of noise. In an extended system the noisy
effect is provided by the spatial modes excited by the perturbation. We show that this intermittency is a
precursor of the onset of strong turbulence in the system.
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The onset of turbulence in spatiotemporal systems is a
long-standing problem of paramount importance, which
has been studied intensively [1]. If we consider a
Fourier-mode description of the transition to turbulence
in a spatially extended dynamical system, the onset of
turbulence occurs when the system energy, originally con-
centrated in the temporal degree of freedom, is distributed
among the spatial modes. Moreover, the temporal dynam-
ics must present a chaotic attractor acting as a stochastic
pump, by feeding energy to the spatial modes to be excited
in order to yield irregular spatial behavior [2,3]. In a
previous paper, we described this process in a system of
three waves nonlinearly coupled through interactions of a
wave triplet subjected to a resonance condition [4]. The
temporal dynamics, exhibiting chaotic behavior but a pe-
riodic spatial profile, can be viewed geometrically as a low-
dimensional manifold embedded in the phase space con-
sisting of the Fourier modes retained in the procedure to
solve the system. The onset of turbulence occurs when this
manifold loses transversal stability and trajectories explore
more spatial degrees of freedom, imparting energy to the
corresponding spatial modes [5].

In this Letter we consider a situation where there are two
manifolds instead of only one, in each of which lie sta-
tionary solutions of a periodically forced nonlinear wave
equation corresponding to different wave energies. These
manifolds lose transversal stability through the same pro-
cess as before, but there are novel features in this case. The
most important is that both manifolds may be transversely
unstable. In this case the trajectories wander through the
available phase space volume approaching the vicinity of
both manifolds in an erratic way. This behavior, also
known as two-state on-off intermittency, has been de-
scribed in low-dimensional dynamical systems [6] as
well as in spatially extended systems [7]. In this kind of
intermittency there is an alternating behavior between two
different stationary states. Because of the chaotic behavior
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in each state, these alternations occur for different and
irregularly spaced time intervals. Two-state intermittency
differs from on-off intermittency [8] because the system
state, after departing from a given state, goes to the vicinity
of another state, the transient behavior between them being
governed by a chaotic saddle [9]. In spatially extended
systems the dynamics at either state lies on a manifold
embedded in the phase space.

As a representative example of a spatially extended
dynamical system with two solution branches, we consider
the damped and forced drift wave equation [10,11]

¢, +ad, +ch, + fdd, + yd = —esin(Kx — Q).
(D

For magnetically confined fusion plasmas ¢(x, 1) is the
nondimensional electric potential of a drift wave propagat-
ing along the poloidal direction of a toroidal plasma, where
the constants a, ¢, and f stand for plasma and wave
parameters, and we introduced a linear damping term
with coefficient y [12]. The effect of other possibly rele-
vant modes is represented by a time-periodic driving with
amplitude €, wave number K, and frequency (), represent-
ing the inductor wave.

Equation (1), for certain parameter values, displays a
transition from pure temporal chaos without spatial mode
excitation to spatiotemporal chaos. We found that the
solutions wander in an intermittent fashion between two
nonoverlapping states of distinct wave energies, hence an
example of two-state on-off intermittency in a higher-
dimensional system of physical interest. In previous works
[10,13,14] such a transition was also reported to be due to
an interior crisis, resulting from a collision between a
chaotic attractor and an unstable periodic orbit. We believe
that both scenarios can arise due to different initial con-
ditions, since this high-dimensional dynamical system
must possess an involved basin of attraction structure,
with many coexisting different scenarios.

© 2010 The American Physical Society


http://dx.doi.org/10.1103/PhysRevLett.105.055001

PRL 105, 055001 (2010)

PHYSICAL REVIEW LETTERS

week ending
30 JULY 2010

Provided the x- coordinate is a bounded variable, we
suppose a Fourier expansion ¢(x,1) =N ¢, (1) X
exp(ik,x), where ¢,(t) are time-dependent amplitudes
and «, = 27n/L in a box of length L = 27 and periodic
boundary conditions. Notice that the mode ky =0 is
purely temporal, whereas «, = o = 1,2, 3, ... stand for
the spatial modes. One obtains a system of N coupled
ordinary differential equations, solved using a predictor-
corrector scheme. In the numerical simulations we used
N = 128 modes, unless stated otherwise, and we kept fixed
the following parameters [12]: a = —0.287 11, ¢ = 1.0,
f=—-60,y=0.1, K= 1.0, and Q = 0.65, such that €
will be our control parameter. The initial conditions for the
system of N coupled mode equations are ¢(0) = 0.01,
¢1(0) = ¢,(0) = oR(0, 1), ¢,(0) = o,R(0, 1), for n =
3, where oy = 0.001, 0, = 1073, and R(0, 1) is a pseudor-
andom number chosen within the interval [0, 1] with uni-
form probability. We stress that these initial conditions are
different from those used in Ref. [12], where a solitary-
wave solution of the unperturbed case (e = 0, y = 0) was
chosen.

The solutions of the initial and boundary value problem
defined by Eq. (1) can be characterized by the wave energy,
defined as
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which turns out to be an integral of motion for the unper-
turbed case. Since E is a scalar measure, its time evolution
cannot be thought to be a projection of some higher-
dimensional variable of the system. For the parameter
values explored in this work the wave dynamics is chaotic,
but even so the energy difference is bounded [13,14].

In Fig. 1 we exhibit the time evolution of the energy
difference AE = E(r) — E(0) for selected values of the
control parameter €. As the latter is increased from zero,
we have a steady state energy with a few peaks, and
asymptoting to a value of about 0.05 [Fig. 1(a)], until a
first bifurcation value €, = 0.199 55 is achieved. For €, <
€ < €, = 0.201 00, we have alternation of energy values
between two values, the former ~0.05 lower branch and a
~0.25 higher branch [Fig. 1(b)]. Finally, for € > €, the
energy fluctuates about the higher branch value, never to
return to the lower branch [Fig. 1(c)]. Our main point in
this Letter is that the lower and upper branches of the wave
energy are two energy states for which, when €, < € < ¢,
there is intermittent behavior. These two states can be
represented, in the Fourier-mode space, by different energy
hypersurfaces we call A and B. For € < €, the state A is
stable with respect to transversal displacements from the
energy hypersurface, whereas B is transversely unstable
and not reached by typical initial conditions [Fig. 1(a)].

Figure 1(d) shows a scheme of the situation, in which the
states A and B have average energies of 0.05 and 0.25,
respectively. The shaded regions represent the maximum
fluctuations of the energy about these states, in order to
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FIG. 1 (color online). Time evolution of the energy difference
for (a) €=0.199553 =¢;,, (b) €, <e=0.20025<¢,,
(c) € = 0.20175 = €,. The dashed line is the limit of bounded
variation for the fluctuations of the lower energy state.
(d) Schematic figure showing the two energy states and their
corresponding transversal stability. The shaded regions represent
the intervals of bounded variation of energy fluctuations about
their average values (shown as solid lines and dashed lines for
transversely stable and unstable cases, respectively).

emphasize that there is no overlapping between them. The
state A loses transversal stability at € = €, and B becomes
transversely stable at € = €. The existence of these two
bifurcation points has long been known and has been
related to hysteretical behavior when increasing and/or
decreasing € through these critical values [12]. For the
set of initial conditions used here, however, since the
energy excursions are bounded and nonoverlapping, there
cannot be such hysteretical behavior, since none of these
states are transversely stable. Another observable conse-
quence of the transversal stability properties of the states A
and B is that, for €, < € < €, both manifolds are trans-
versely unstable, and the wave energy makes intermittent
transitions between these two states [Fig. 1(b)]. Finally, for
€ > €, only the state B is transversely stable and two-state
intermittency ceases [as in Fig. 1(c)].

Since a few temporal modes are excited in the state A, it
corresponds to temporal chaos combined with regular spa-
tial patterns. This is illustrated by the space-time plot
depicted in Fig. 2(a), obtained for € < €,, which displays
a chaotic time evolution with regular spatial behavior akin
to a traveling wave solution. However, as the state B
becomes transversely stable, a large number of spatial
modes are excited. An extreme example, considering € >
€, 1s shown in Fig. 2(b), for which we see aperiodic
behavior in both spatial and temporal scales (spatiotempo-
ral chaos). For a small interval of time (circa 25 pseudo-
periods), some traveling waves, which appear due to the
inductor term, are continuously created and destroyed.

In order to provide a quantitative characterization of the
dynamics in space and time, we can resort to Lyapunov
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FIG. 2 (color online). Space-time plots for the wave amplitude
for (a) € = 0.1990 < € and (b) € = 0.2100 > €.

exponent computation in Fourier space. In this case, each
Fourier mode in the discrete transform can be considered a
degree of freedom, and the corresponding Lyapunov ex-
ponent is computed from the set of N ordinary differential
equations for the wave amplitudes ¢,(r), with n =
0,1,2,..., N. The exponent related to n = O corresponds
to the temporal dynamics, whereas the n = 1 case stands
for spatial degrees of freedom and can be used to detect
spatial mode excitation [4].

Accordingly, in Fig. 3 we plot the time evolution of the
30 first Lyapunov exponents out of N = 128. The symbols
Ay and A7 stand for longitudinal and transversal exponents,
respectively. We assume the Lyapunov exponents to be
zero if their average decay is a power law and negative if
they decay faster than a power law. In the case of € =
0.195 < €¢, only the Lyapunov exponent related to the
time (n = 0) asymptotes to a nonzero value [Fig. 3(a)],
confirming our claim that only temporal chaos is observed.
The exponents corresponding to spatial modes are shown

1x10° T T T

[}

LR

3 /
>
v
L ©

1x10°

M0

(b)

< 1x10°

T
[

1x10”

FIG. 3. The 30 largest Lyapunov exponents corresponding to
modes in Fourier space for (a) € = 0.195 and (b) € = 0.205.

to decay in a roughly power law (n = 1) and even faster
rates (for n = 2). Hence those spatial modes, if excited at
all, can have at most periodic behavior (and a possible
quasiperiodic one). By way of contrast, for € > €, a large
number of the exponents for n # 0 do not vanish, hence
many spatial modes become chaotic [Fig. 3(b)]. This spa-
tial mode excitation involving so many Fourier modes
suggests the existence of a strongly turbulent state.

The existence of strong turbulence can actually be tested
by computing the Fourier spectrum of the waves |@(k,,)| =
(1/tma) S |@,,(2)|, where k, = n. When there is tem-
poral chaos only [i.e., for € < €, cf. Fig. 4(a)], we have an
energy spectrum that decays faster than a power law,
starting from a maximum value at x,, = 3. A least-squares
fit gives an exponential scaling |@(«,,)| ~ e~ 7%, with o =
0.737 = 0.014. However, in the upper energy branch B,
where we believe that a strong turbulent state sets in, the
computed Fourier spectrum can be fitted by a power law
of the form |@(k,)|~k,®, where w = 1.558 + 0.019
[Fig. 4(b)]. In Fig. 4(b) we have used N = 1024 modes.
It has been necessary to increase the number of modes in
this case since, in such a fully turbulent scenario, there is a
strong interaction among different spatial scales, leading to
a fast redistribution of the wave energy to the lowest
wavelengths.

Our numerical evidences of strong turbulent behavior in
the upper energy branch B are based on the Taylor hy-
pothesis; namely, we can relate the spatial statistics corre-
sponding to a fixed time to the statistics of a time series
measured at a single point of space [15]. Hence we may
characterize the turbulent behavior by the energy spectrum
as a function of the frequency rather than the wave number.
The energy spectrum E(v) corresponding to the Fourier
spectra we considered above is depicted in Fig. 4(c), where
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FIG. 4 (color online). Fourier spectra for (a) € = 0.1990 and
(b) € = 0.2100. (c) Wave energy spectrum for € = 0.2100. The
solid line is the Kolmogorov 5/3 scaling law.
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FIG. 5 (color online). Histogram showing the distribution of
the plateau sizes for the laminar region A and € = 0.20075.

we superimposed a straight line corresponding to the
Kolmogorov scaling E(v) ~ »=5/3 to guide the eye. We
see three frequency intervals with respect to the
Kolmogorov scaling: (i) for small frequencies we have
the familiar 1/f-noise behavior; (ii) an interval 0.02 =
v = 0.5 which obeys the 5/3 scaling except for a peak
near 0.1, which is related to the inductor wave with fre-
quency /27 = 0.1034; (iii) for large frequencies the
scaling is exponential (heavy tail).

Two-state on-off intermittency occurs in the case €, <
€ < €, and is characterized by the irregular alternations
between the two energy branches A and B, which are
transversely unstable in the Fourier-mode phase space of
the system. If the trajectory starts at a point close (off but
very near) to A, the system stays for some time at the lower
energy branch, until it approaches a transversely unstable
periodic orbit embedded in the invariant manifold A and is
ejected away from A towards B, essentially the same
behavior occurring there. By adopting a small tolerance
in the vicinity of each invariant manifold, we can define
“laminar” states—or plateaus—as those in which the dy-
namics is very near either of the invariant manifolds. The
duration of these plateaus is rather arbitrary since the
dynamics is temporally chaotic and the system ergodically
approaches every accessible transversely unstable orbit in
both manifolds. Hence, a statistical characterization of the
two-state on-off intermittency can be given by the proba-
bility distribution function of the plateau sizes (or laminar
durations) 7; in the intermittent regime. A numerical ap-
proximation of this probability distribution function is
provided in Fig. 5, where we plot a histogram of the plateau
sizes. We have two scaling regimes: (i) a power law P(7) ~
77#, with B = —0.469 + 0.016, valid for small plateaus,
and (ii) an exponential (or heavy) tail P(7) ~ e?", with
v = —0.00067 = 0.00001 for large plateaus. The exis-
tence of these two scalings is a characteristic feature of
on-off intermittency with noise, the existent crossover
between them being related to the noise level. In a spatially
extended system the noisy effect is provided by the irregu-

lar forcing of the spatial modes excited in the Fourier
space.

In summary, we proposed a new scenario for the onset of
intermittent behavior in complex systems having two non-
overlapping and bounded energy states. The underlying
mechanism of the transition is an extension of the two-
state on-off intermittency to spatially extended systems,
and it is complementary to other scenarios whereby this
transition may occur via a crisis. The basic difference
between these scenarios is that, in the latter one, the energy
states present overlapping excursions. Both scenarios may
appear as a result of different initial conditions since the
basin structure of spatially extended systems is highly
involved. Our results can be a theoretical basis for explain-
ing intermittent structures in turbulent signals from fusion
plasma experiments [16].

This work has partial financial support of CNPq,
CAPES, Fundac@o Araucaria, and RNF-CNEN (Brazilian
Fusion Network).

[1] U. Frisch, Turbulence: The Legacy of A. N. Kolmogorov
(Cambridge University Press, Cambridge, England, 1995).

[2] G. Corso and A.J. Lichtenberg, Phys. Rev. E 59, 6652
(1999).

[3] S.R. Lopes and F.B. Rizzato, Phys. Rev. E 60, 5375
(1999).

[4] J.D. Szezech, Jr., S.R. Lopes, and R. L. Viana, Phys. Rev.
E 75, 067202 (2007).

[5] J.D. Szezech, Jr., S.R. Lopes, R.L. Viana, and I.L.
Caldas, Physica (Amsterdam) 238D, 516 (2009).

[6] Y. Lai and C. Grebogi, Phys. Rev. E 52, R3313 (1995).

[7] E. Covas, P. Ashwin, and R. Tavakol, Phys. Rev. E 56,
6451 (1997).

[8] J.F. Heagy, N. Platt, and S. M. Hammel, Phys. Rev. E 49,
1140 (1994).

[9] E.L. Rempel, A.C.-L. Chian, E.E.N. Macau, and R.
Rosa, Chaos 14, 545 (2004).

[10] E.L. Rempel and A.C.-L. Chian, Phys. Rev. Lett. 98,
014101 (2007).

[11] W. Horton, Phys. Rep. 192, 1 (1990).

[12] K. He and A. Salat, Plasma Phys. Controlled Fusion 31,
123 (1989).

[13] K. He, Phys. Rev. Lett. 94, 034101 (2005).

[14] K. He and A.C.-L. Chian, Phys. Rev. Lett. 91, 034102
(2003).

[15] E. Gledzer, Physica (Amsterdam) 104D, 163 (1997).

[16] V. Antoni, V. Carbone, E. Martines, G. Regnoli, G.
Serianni, N. Vianello, and P. Veltri, Europhys. Lett. 54,
51 (2001).

055001-4


http://dx.doi.org/10.1103/PhysRevE.59.6652
http://dx.doi.org/10.1103/PhysRevE.59.6652
http://dx.doi.org/10.1103/PhysRevE.60.5375
http://dx.doi.org/10.1103/PhysRevE.60.5375
http://dx.doi.org/10.1103/PhysRevE.75.067202
http://dx.doi.org/10.1103/PhysRevE.75.067202
http://dx.doi.org/10.1016/j.physd.2008.11.015
http://dx.doi.org/10.1103/PhysRevE.52.R3313
http://dx.doi.org/10.1103/PhysRevE.56.6451
http://dx.doi.org/10.1103/PhysRevE.56.6451
http://dx.doi.org/10.1103/PhysRevE.49.1140
http://dx.doi.org/10.1103/PhysRevE.49.1140
http://dx.doi.org/10.1063/1.1759297
http://dx.doi.org/10.1103/PhysRevLett.98.014101
http://dx.doi.org/10.1103/PhysRevLett.98.014101
http://dx.doi.org/10.1016/0370-1573(90)90148-U
http://dx.doi.org/10.1088/0741-3335/31/1/010
http://dx.doi.org/10.1088/0741-3335/31/1/010
http://dx.doi.org/10.1103/PhysRevLett.94.034101
http://dx.doi.org/10.1103/PhysRevLett.91.034102
http://dx.doi.org/10.1103/PhysRevLett.91.034102
http://dx.doi.org/10.1016/S0167-2789(96)00300-4
http://dx.doi.org/10.1209/epl/i2001-00227-1
http://dx.doi.org/10.1209/epl/i2001-00227-1

