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We experimentally investigate the sub-Fourier behavior of a �-kicked-rotor resonance by performing a

measurement of the fidelity or overlap of a Bose-Einstein condensate exposed to a periodically pulsed

standing wave. The temporal width of the fidelity resonance peak centered at the Talbot time and zero

initial momentum exhibits an inverse cube pulse number (1=N3)-dependent scaling compared to a 1=N2

dependence for the mean energy width at the same resonance. A theoretical analysis shows that for an

accelerating potential the width of the resonance in acceleration space depends on 1=N3, a property which

we also verify experimentally. Such a sub-Fourier effect could be useful for high precision gravity

measurements.
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The quantum �-kicked-rotor (QDKR) has proved to be
an excellent testing ground for theoretical and experimen-
tal studies of chaos in the quantum domain [1]. An experi-
mental version of this system in the form of the kicked
particle is achieved by exposing cold atoms to N pulses of
an off-resonant standing wave of light [1,2]. Ever since its
realization, the QDKR has revealed a rich variety of effects
including dynamical localization [3], quantum accelerator
modes [4,5], quantum ratchets [6,7], and quantum reso-
nances [2,8,9]. Such resonances appear for pulses sepa-
rated by rational fractions of a characteristic time called the
Talbot time and can be observed as sharp peaks in the mean
energy of the system [10]. The width of these peaks has
been found to scale as 1=N2, a sub-Fourier effect attributed
to the nonlinear nature of the QDKR and explained using a
semiclassical picture [11]. Away from the resonances,
dynamical localization sets in, characterized by the quan-
tum suppression of classical momentum diffusion beyond a
‘‘quantum break time’’ [3]. This property, unique to quan-
tum dynamics in the chaotic regime, was utilized to dis-
criminate between two driving frequencies of the QDKR
with sub-Fourier resolution [12].

High-precision measurements using quantum-
mechanical principles have been carried with atom inter-
ferometers for many years [13]. Such devices were used to
determine the Earth’s gravitational acceleration [14], fine
structure constant � [15], and the Newtonian constant of
gravity [16]. The promise of the QDKR as a candidate for
making these challenging measurements has begun to be
realized [17]. Recently a scheme was proposed for mea-
suring the overlap or fidelity between a near-resonant �-
kicked-rotor state and a resonant state via application of a
tailored pulse at the end of a rotor pulse sequence [18]. It
predicted a 1=N3 scaling of the temporal width of the
fidelity peak. In this paper we report on the observation
of such fidelity resonance peaks and their sub-Fourier
nature. Figure 1 illustrates a plot of the fidelity (fraction
of atoms in the zeroth order momentum state) vs pulse
period obtained by the application of an overlap pulse at

the end of five rotor kicks. For comparison, we also plot the
mean energy of the rotor sequence. It can be seen that even
for relatively few kicks the fidelity peak is significantly
narrower. We also investigated the sensitivity of this fidel-
ity resonance to an accelerating rotor. As will be seen, our
calculations indicate that the width of the fidelity peak vs
acceleration decreases at a sub-Fourier rate of 1=N3. We
confirm this result with experiments.
The dynamics of a periodically kicked atom in the

presence of a linear potential is described by the quantum
�-kicked accelerator (QDKA) Hamiltonian

Ĥ ¼ P̂2

2
þ �

�
X̂ þ�d cosðX̂Þ

XN
t¼1

�ðt0 � t�Þ: (1)

P̂ is the momentum (in units of two photon recoils, @G)
that an atom of mass M acquires from short, periodic

FIG. 1. Experimentally measured fidelity distribution (circles)
due to five kicks of strength �d ¼ 0:8 followed by a � phase
shifted kick of strength 5�d. The mean energy (triangles) of the
same five kick rotor is shown for comparison. Numerical simu-
lations of the experiment for a condensate with momentum width
0:06@G are also plotted for fidelity (dashed line) and mean
energy (solid line). The amplitude and offset of the simulated
fidelity were adjusted to account for the experimentally imper-
fect reversal phase.
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pulses of a standing wave with a grating vector G ¼
2�=�G (�G is the wavelength of the standing wave). X̂ is
position in units of G�1 and � ¼ Mg0T=@G, g0 being its
acceleration between pulses separated by T, the pulse
period. �d ¼ �2�t=8�L represents the kicking strength
of a pulse of length�t,� is the Rabi frequency, and �L the
detuning of the kicking laser from the atomic transition. t0
is the continuous time variable and � ¼ 2�T=T1=2 is the

scaled pulse period.
For the case � ¼ 0, Eq. (1) reduces to the usual QDKR

Hamiltonian [2]. For now we restrict ourselves to this
situation. Primary quantum resonances are seen for pulses
separated by integer multiples of the half-Talbot time,
T1=2 ¼ 2�M=@G2 or � ¼ 2�. Adjacent momentum orders

evolve phases which are integer multiples of 2� during this
time period resulting in a quadratic growth in the rotor
mean energy, hEi ¼ 2Er�

2
dN

2, where Er ¼ @
2G2=8M is

the photon recoil energy. The width of the mean energy
around the resonance time was found to decrease as
1=ðN2�dÞ [9,11].

In order to demonstrate the role of the relative phase
deviations of the contributing momentum states near such
a resonance, a ‘‘fidelity’’ test for the QDKR was proposed
in Ref. [18]. In this scheme, a kick changed in phase
by � and carrying a strength of N�d is applied at the
end of the N rotor kicks. The fidelity is then defined as

F ¼ jh�jUrU
Nj�ij2 where U ¼ expð�i �2 P̂

2Þ�
exp½�i�d cosðX̂Þ� describes the one period evolution,

Ur ¼ exp½iN�d cosðX̂Þ� is the overlap pulse, and � is the
fractional part of the momentum. F therefore gives the
probability of the revival of the initial state and is measured
by the fraction of atoms which have returned to the initial
zero momentum state. Using a perturbative treatment, it
was shown that near the resonance at the Talbot time, � ¼
4�, the fidelity is [18]

Fð	; � ¼ 0Þ ’ J20

�
1

12
N3�2

d	

�
; (2)

where 	 ¼ �� 4�. The width of such a peak in 	 therefore
changes to 1=ðN3�2

dÞ, displaying a stronger sub-Fourier

dependence on the number of kicks than the mean energy.
Our experiment is performed by producing a Bose-

Einstein condensate of 20 000 Rb87 atoms in the 5S1=2,
F ¼ 1, mF ¼ 0 level in an optical trap [5,19]. After being
released from the trap, the condensate is exposed to a
horizontal standing wave created by two beams of wave-
length � ¼ 780 nm light detuned 6.8 GHz to the red of the
atomic transition. The wave vector of each beam was
aligned 
 ¼ 52� to the vertical. This created a horizontal
standing wave with a wavelength of �G ¼ �=2 sin
 and a
corresponding Talbot time of 106:5 �s. Two acousto-optic
modulators controlled the pulse lengths as well as the
relative frequencies of the kicking beams enabling the
control of the acceleration and initial momentum of the
standing wave with respect to the condensate. The kicking

pulse length was�t ¼ 0:8 �swith a�d � 0:6. For the last
kick the phase of one of the acousto-optic modulators rf
driving signal was changed by�which shifted the standing
wave by half a wavelength. In order to keep this final
overlap pulse within the Raman-Nath regime we varied
the intensity rather than the pulse length to create a kick
strength of N�d. This was done by adjusting the ampli-
tudes of the rf waveforms driving the kicking pulse.
Dephasing primarily due to vibrations made the reversal
process inconsistent for N > 6 [20]. To reduce this, the
standing wave at each kick was shifted by half a wave-
length with respect to the previous kick. That is, the
summation in Eq. (1) becomes

P
N
t¼1ð�1Þt�1�ðt0 � t�Þ.

This had the effect of shifting the Talbot time resonance
to T1=2. Consequently the reduced experimental time

led to much improved results. Following the entire kicking
sequence we waited 8 ms for the different momentum
orders to separate before the atoms were absorption
imaged.
From the time-of-flight images fidelity F is measured as

the fraction of atoms which have reverted back to the
zeroth order momentum state, that is F ¼ P0=

P
nPn where

Pn is the number of atoms in the nth momentum order. To
facilitate the analysis of the data, all of the resonance
widths (�	) were scaled to a reference kick number ofN ¼
4. That is, we define a scaled fidelity width �	 ¼
�	=�	N¼4 for each scaled kick number Ns ¼ N=4 and
recover log�	 ¼ �3 logNs using Eq. (2). For each kick,
a scan is performed around the resonance time. To ensure
the best possible fit of the central peak of the fidelity
spectrum to a Gaussian, the time is scanned between values
which make the argument of J20 of Eq. (2)� 2:4 so that the
first side lobes are only just beginning to appear. Fig-
ure 2(a) plots the logarithm of the FWHM for four to
nine kicks scaled to the fourth kick. A linear fit to the
data gives a slope of �2:73� 0:19 giving a reasonable
agreement with the predicted value of �3 within the
experimental error. As seen in the same figure, the results
are close to the numerical simulations which take into
account the finite width of the initial state of 0:06@G [7].
We also compared the resonance widths of the kicked-rotor
mean energy hEi to that of the fidelity widths. As in the
fidelity, the plotted values �hEi have been normalized to
that of the fourth kick. On the log scale, the width of each
peak gets narrower with the kick number with a slope of
�1:93� 0:21 [Fig. 2(a)] in agreement with previous re-
sults [9,21]. As a further test of Eq. (2), the variation in the
widths of the fidelity and mean energy peaks were studied
as a function of �d. Figure 2(b) shows the fidelity width
changing with a slope of �1:96� 0:3, close to the pre-
dicted value of �2. This again scales faster than the mean
energy width which decreases with a slope of �0:88�
0:24 (the theoretical value being �1).
The resonances studied here appear for pulses separated

by the Talbot time and an initial momentum state of� ¼ 0.
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Away from this resonant �, phase changes in the ampli-
tudes of the different momentum orders lead to a fidelity
which depends on the initial momentum as Fð	 ¼ 0; �Þ ¼
J20½2��dNðN þ 1Þ�� [18]. The peak width in � space is

thus expected to change as 1=½NðN þ 1Þ� around� ¼ 0, as
against a 1=N scaling of the mean energy width [9]. To
verify this, the initial momentum of the condensate with
respect to the standing wave was varied and the kicking
sequence applied. The experimentally measured widths
�� ¼ ��=��N¼4 in Fig. 3(a) display a scaling of �� /
½NðN þ 1Þ��0:92 close to the theoretical value.

For an initial state j�þ ni, the wave function acquires a
nonzero phase during the free evolution even at the Talbot
time. Therefore the final kick performs a velocity selective
reversal, preferentially bringing back atoms closer to an
initial momentum of � ¼ 0. This is similar to the time-
reversed Loschmidt cooling process proposed in
Refs. [22,23], although in that technique a forward and
reverse path situated on either side of the resonant time was
used in order to benefit from the chaotic dynamics. To
observe this effect, the current scheme offers an experi-
mental advantage in terms of stability due to the reduced
length of the pulse sequence. Here, only a single pulse
performs the velocity selection at the end, whereas in the
Loschmidt technique N phase reversed kicks separated by
a finite time are used. Figure 4 demonstrates the reduction
of the momentum distribution width. Accompanying this
decrease is a drop in the peak height. Our simulations and
the results of Ref. [23] predict that for the case of a non-
interacting condensate, this should remain constant. In
addition to interactions, we expect experimental imperfec-

tions in the fidelity sequence to play a role in the smaller
peak densities with increasing kick numbers. We per-
formed the same experiment 4.5 ms after the Bose-
Einstein condensate was released from the trap when the
mean field energy had mostly been transformed to kinetic
energy in the expanding condensate. A similar reduction in
the momentum width of the reversed state, along with a
decrease in the peak density, was observed.
We now investigate the behavior of fidelity in the pres-

ence of acceleration, i.e. � � 0. The state of the QDKA
Eq. (1) after N kicks is jc ðN�Þi ¼ P

ncnjnþ �i where n
is the integer part of momentum P̂. The expansion coef-

ficients cn are cnð	; �; �Þ ¼ hnþ �jÛgN � � � Ûg2Ûg1 j�i.
Ûgt ¼ exp½�i �2 ðp̂þ t�þ �

2Þ2� exp½�i�d cosðX̂Þ� is the

tth kick evolution operator in the freely falling frame
obtained after a gauge transformation of the Hamiltonian
(1) which restores the conservation of quasimomentum �
[24]. Close to the resonances, we have Fð	; �; �Þ ’
jPnJ

2
nðN�dÞ expð�i�nÞj2, where �n ¼ @
n

@	 j	þ @
n
@� j�þ

@
n
@� j� describes the effect of deviations from resonance

on the coefficients cn. Using a procedure detailed in

Ref. [18], one can show that @
n
@� jð	¼�¼�¼0Þ ¼

@cn
@� j

icnð0;0;0Þ ¼
�4�nN2=3, where we have kept terms in N2. Finally we
arrive at the fidelity in the presence of acceleration,

Fð�; 	 ¼ � ¼ 0Þ ¼ J20

�
4�

3
N3�d�

�
: (3)

Thus the width of such a peak centered at the resonant zero
acceleration should drop as 1=N3. In order to verify the
above result, the standing wave was accelerated during the
application of the pulses. This acceleration was scanned
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FIG. 2 (color online). Experimentally measured fidelity
(circles) and mean energy (triangles) widths (FWHM) as a
function of (a) the number of pulses, and (b) the kicking strength
~�d scaled to �d of the first data point. In (a), the data are for four
to nine kicks in units normalized to the fourth kick. Error bars in
(a) are over three sets of experiments and in (b) 1� of a Gaussian
fit to the distributions. Dashed lines are linear fits to the data.
Stars are numerical simulations for an initial state with a mo-
mentum width of 0:06@G.
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FIG. 3. (a) Variation of the fidelity peak width around � ¼ 0
as a function of kick number NðN þ 1Þs ¼ NðN þ 1Þ=20 scaled
to the fourth kick. The straight line is a linear fit to the data with a
slope of �0:92� 0:06. Error bars as in Fig. 2(b). (b) Depen-
dence of the acceleration resonance peak width on N in units
scaled to the fourth kick. Error bars are over three sets of
experiments.
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across the resonant zero value and readings of the fidelity
collected. Since a typical value of the half width at half
maximum is � ¼ 0:05 for N ¼ 4 (corresponding to an
acceleration of 4 m=s2), the perturbative treatment of ac-
celeration on fidelity used above is justified. Figure 3(b)
plots the experimental data for four to nine kicks, where the
widths of the peaks decrease with a slope of�3:00� 0:23
in excellent agreement with the theory.

In conclusion, we performed experimental measure-
ments of the fidelity widths of a �-kicked-rotor state near
a quantum resonance. The width of these peaks centered at
the Talbot time decreased at a rate of N�2:73 comparable to
the predicted exponent of �3. By comparison, the mean
energy widths were found to reduce only as N�1:93.
Furthermore, the fidelity peaks in momentum space
changed as ½NðN þ 1Þ��0:92, also consistent with theory.
The reversal process used in the fidelity experiments led to
a decrease in the momentum distribution of the final zeroth
order state by �25% (for N ¼ 9) from the initial width.
The sub-Fourier dependencies of the mean energy and
fidelity observed here are characteristic of the dynamical
quantum system that is the QDKR [18]. The narrower
resonances of the fidelity scheme could be exploited in
locating the resonance frequency with a resolution below
the limit imposed by the Fourier relation. This can help
determine the photon recoil frequency (!r ¼ Er=@) which
together with the photon wavelength enables measurement
of the fine structure constant with a high degree of preci-
sion [15,17]. We also demonstrated a N�3 dependence of
the resonance width in acceleration space in accordance
with the extended theory. The sensitivity of an atom-inter-

ferometer-based gravimeter scales as the square of the loop
time, hence the pursuit of large area interferometers to
improve accuracy [14]. By comparison, the fidelity is
responsive to the gravitational acceleration g with the
cube of the ‘‘time’’ N, leading to the possibility of higher
precision measurements. One could perform a fidelity
measurement on a freely falling condensate exposed to
kicks accelerating at the local value of g (to realize � 	
1). Variation in gwould then manifest itself as a shift of the
resonant acceleration. A parts per billion precision [14]
would require a judicious selection of the parameters (N,
�d, T), for instance (150, 10, 16T1=2). Such a resolution,

though not feasible in the current setup without addressing
stability-related issues, could be possible with future
refinements.
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FIG. 4 (color online). (a) Momentum width of the reversed
zeroth order state as a function of kick number. Error bars are an
average over three experiments. (b) Optical density plots for the
initial state [(red) solid curve] and kick numbers 2 [(magenta)
dot-dashed curve], 4 [(black) dotted curve], and 6 [(blue) dashed
curve] after summation of the time-of-flight image along the axis
perpendicular to the standing wave.
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