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In a new branch of quantum computing, information is encoded into coherent states, the primary

carriers of optical communication. To exploit it, quantum bits of these coherent states are needed, but it is

notoriously hard to make superpositions of such continuous-variable states. We have realized the complete

engineering and characterization of a qubit of two optical continuous-variable states. Using squeezed

vacuum as a resource and a special photon-subtraction technique, we could with high precision prepare an

arbitrary superposition of squeezed vacuum and a squeezed single photon. This could lead the way to

demonstrations of coherent state quantum computing.
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Among the various physical implementation schemes of
quantum-information processing (QIP), optical QIP in
traveling light fields is a significant contender [1]. To avoid
hard-to-implement inline nonlinearities, the linear optical
quantum computing scheme (LOQC) was devised. It uses
off-line resource states, linear optical processing, and
photon-number resolving detection [2,3]. There are two
approaches to LOQC, the standard one being the single-
photon scheme, where single photons are used as the
physical quantum bits (qubits) [2]. The other is referred
to as coherent state quantum computing (CSQC), where
two phase-opposite coherent states are used for the qubits,
i.e., j"i ¼ j�i, j#i ¼ j��i [4–8].

CSQC is not only effective for exponential speed-up of
computations, but also for attaining the ultimate capacity
of an optical channel in current network infrastructure
where coherent states are the primary carriers. Because
coherent states propagate intact, even through lossy chan-
nels, simple coherent state encoding is found to be the
optimal transmission strategy [9]. At the same time, the
optimal decoding should be fully quantum, and can be
implemented by an extension of CSQC [10]. Practical
implementation of CSQC is still a big challenge,
though—one requirement is the availability of arbitrary
qubit states as resources. So far, two diagonal states of
the qubit, j�i � j��i, have been generated in the labora-
tories [11–16]. We will refer to these as coherent state
superposition (CSS) states.

We have implemented a setup that is suited for the
generation of such arbitrary qubits. For this demonstration,
though, we perform the complete engineering of a differ-
ent, but closely related kind of qubit, namely, one with
squeezed vacuum and squeezed single-photon states as the
basis. The squeezed photon state is in fact very similar to
one of the CSQC diagonal qubits, as was utilized in the
previous demonstrations of those. To create the arbitrary
superposition of the basis states, we use single-photon
subtraction from a squeezed vacuum assisted by a coherent

displacement operation [17]—although in that paper it was
suggested to use two-photon detection, single-photon de-
tection allows for considerably faster data taking and still
works perfectly as a demonstration of the method. Photon
subtraction is a simple, but powerful technique that has
been used for nonclassical state generation [11–15], entan-
glement increase [18,19], and fundamental tests of quan-
tum mechanics [20] (see [21] for an overview). A related
experiment for engineering of superpositions of the 0-, 1-,
and 2-photon states was recently reported [22]. In our
scheme, in contrast, the state elements of the superposition
lie in the infinite dimensional Hilbert space, including
many-photon number components.

FIG. 1 (color). Experiment outline. (a) Conceptual schematic.
(b) Experimental setup. OPO, optical parametric oscillator; R,
beam splitter reflectivity; LO, local oscillator; APD, avalanche
photodiode. See text for details.
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A simplified schematic is shown in Fig. 1(a). The

squeezed vacuum state ŜAðrÞj0Ai is prepared in mode A,

where ŜAðrÞ represents the squeezing operation with
strength r. A small fraction R of it is tapped off via a
beam splitter as a trigger beam in mode B, subjected to the

displacement operation D̂Bð�Þ, and detected on an ava-
lanche photodiode (APD).

The output state conditioned on an APD click is

h1BjD̂Bð�ÞV̂ABŜAðrÞj0ABi � N ð�ŜAðrÞj0Ai
� ffiffiffiffi

R
p

sinhrŜAðrÞj1AiÞ; (1)

with normalization factor N , and with V̂AB representing
the beam splitting operation. This superposition originates
from the two indistinguishable events; an APD click comes
either from the displacement or from the squeezing. In the
former case the detected photon is uncorrelated with the
output mode, hence leaving the squeezed vacuum state

intact, ŜðrÞj0i. In the latter case the output is transformed
to a 1-photon subtracted squeezed vacuum state, equivalent

to a squeezed photon, ŜðrÞj1i. The indistinguishability of
the two events leads to a coherent superposition whose
weight and phase can be controlled by the parameters of
the displacement operation. Each of the two states is
composed of several Fock state elements—only even pho-

ton numbers for ŜðrÞj0i and odd numbers for ŜðrÞj1i. They
are orthogonal to each other, so together they constitute a
qubit basis and the general output state (1) can therefore be
represented on a Bloch sphere as

j�ð�;’Þi ¼ cos
�

2
ŜðrÞj0i þ ei’ sin

�

2
ŜðrÞj1i; (2)

with ’ ¼ �� arg� and, after normalization,

cos
�

2
¼ j�j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij�j2 þ Rsinh2r
p

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ndisp
ndisp þ nsq

s

; (3)

where ndisp (nsq) are the number of photons in mode B

originating from the displacement beam (squeezing).
Our experimental setup is shown in detail in Fig. 1(b).

The input squeezed vacuum states at �2:7 dB squeezing
are in a cw beam generated by an optical parametric
oscillator (OPO) at a center wavelength of 860 nm with a
FWHM bandwidth of 9 MHz. After tapping off R ¼ 5%
for the trigger, the main part of the light (the output signal)
is measured on a homodyne detector for state analysis. The
trigger beam is spectrally filtered by two subsequent Fabry-
Perot resonators before it is displaced and directed onto a
Si APD. This filtering is required in order to avoid trigger
events from nondegenerate OPO cavity modes that are
uncorrelated with the homodyned mode. The phase space
displacement is implemented by overlapping the beam
with a weak cw coherent state on an imbalanced beam
splitter [23]. Using a combination of half-wave plates
(HWP) and a polarizing beam splitter (PBS), the beam

splitting ratios are adjusted to experimentally convenient
values. To interfere the two orthogonally polarized beams,
two additional sets of HWP (45� rotation) plus PBS are
needed (see Fig. 1). One output mode of the PBS is sent to
the APD, while the other is monitored on a standard linear
photodiode for the purpose of locking the displacement
phase. The phase monitoring is done with the help of
chopped probe light (10 kHz, 20% duty cycle) in both
the OPO output and the displacement beam modes, and
the locking is controlled by field-programmable gate array
modules. Apart from this essential displacement part, the
setup is mostly identical to that in Refs. [13,15], where
more details are provided.
The time resolution of the trigger signal is on a scale of

subnanoseconds, which is almost instantaneous compared
with the �100 ns time scale of the squeezing correlations.
The trigger signal, say at time t1, specifies a temporal mode
c Aðt� t1Þ of the output state of interest, the shape and
width of which are determined by the OPO output corre-
lations [13]. In the homodyne channel, a continuous photo-
current is sampled around t1, and subsequently integrated
over c Aðt� t1Þ to yield the observed quadrature variable
of the field. The specific quadrature to be measured is
determined by the phase of the local oscillator (LO) of
the homodyne detector. To obtain full information about
the output quantum state, we must carry out many homo-
dyne measurements at a range of different LO phases, that
is, a tomographic state reconstruction. For each state,
360 000 quadrature points were observed, distributed on
12 different LO phases. The reconstruction was then done
by the maximum likelihood method [24] without any
correction of measurement losses.
A selection of our generated states are presented in

Figs. 2 and 3. Each state is represented by its Wigner
function as a top-down contour plot as well as by a
Bloch sphere map of the fidelity between the state and
the ideal squeezed qubit (2) for all combinations of � and
�. To demonstrate the performance of the state engineer-
ing, we show in Fig. 2 the control of the superposition
weight � while keeping the phase constant at (a) ’ ¼ 0�
and (b) ’ ¼ �90�, and conversely, in Fig. 3 we show the
control of the complex phase ’ for fixed weights of the
superposition, (a) � ¼ 135� and (b) � ¼ 60�. In Fig. 2 we
see that by increasing the amount of displacement in the
trigger channel, j�j, we can move from the south pole
(squeezed photon) to the north pole (squeezed vacuum)
of the Bloch sphere along a fixed longitude. While doing
that, the negative dip of the Wigner function moves away
from the center in a direction determined by the displace-
ment phase. At the same time, the dip becomes shallower
and finally disappears as the state approaches the north
pole. In Fig. 3, on the other hand, when sweeping the
displacement phase, arg�, the negative dip circles around
the center while the state on the Bloch sphere turns around
at a fixed latitude.
From the fidelity maps we can see that there is a clearly

defined qubit state of maximum fidelity in the center of the
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orange parts of the maps. These maximum points are all
quite close to the target states that we aimed for in each
qubit realization, marked by small circles on the fidelity
maps. This illustrates the precision of our state control. It is
also clear that the obtained fidelities are not as high around
the south pole as they are in the north. That is because
highly nonclassical states with negative Wigner functions,
such as the squeezed single photon, are much more fragile
and susceptible to losses than, for example, squeezed
vacuum.

Equation (3) anticipates a direct correspondence be-
tween the APD click rates and the resulting superposition
weight. The photon number from squeezing (displace-
ment) is directly proportional to the count rate Rsq (Rdisp)

observed when blocking the displacement (trigger) beam

in front of the overlapping PBS, so the relation would read

� ¼ 2tan�1ðRdisp=RsqÞ�1=2. This relation is shown as the

green curve in Fig. 4, where also the experimentally ob-

tained � (of the ideal qubit with maximum fidelity) as a

function of the click rate ratios Rdisp=Rsq are plotted. The

data points are shown for both the ’ ¼ 0� and the ’ ¼
�90� series of state generation. All the points are lying

below the theoretical curve. That is because the model in

Eqs. (1)–(3) is an idealized picture from which there are

several deviations in the actual experiment. In particular,
there are unavoidable losses in state generation and mea-

surement giving a total efficiency factor of �82% on the
output channel. The trigger channel has an efficiency of
less than 10% due to filtering, fiber coupling, low APD
quantum efficiency, etc., but the effect on the output state is
relatively small (it does, however, mean that the displace-
ment coherent beam must be correspondingly weak). To
more accurately describe the experimental outcomes, we
have developed a relatively simple model [25] which takes
into account a more detailed description of the OPO and
the trigger filtering, as well as all the inefficiencies of the
setup. This model, with no free parameters (except for the
squeezing parameter r that is semifixed), is also plotted in
Fig. 4 and is seen to simulate the measured outcomes very
well. Apart from the superposition weights, the figure also
shows the fidelities between the measured states and the
target states—that is, the fidelity values at the target marks
in the Bloch sphere maps of Fig. 2. The state preparation
works somewhat better for displacement along the anti-
squeezing direction (� ¼ 0�) than along the squeezing
direction. This can be ascribed to the fact that losses
have a larger influence on the squeezed than on the anti-
squeezed quadrature. The fidelities are also well described
by the theoretical model, although with some smaller dis-

FIG. 3 (color). Control of superposition phase. Generated states with the superposition phase � swept while keeping the
superposition weight � constant at (a) 135� and (b) 60�.

FIG. 2 (color). Control of superposition weight. A variety of experimentally generated superposition states where the superposition
weight � has been swept with the phase � fixed at (a) 0� and (b) �90�. The upper panels show the Wigner function as a contour plot
where the axes are the x and p quadratures. The lower panels show a flattened Bloch sphere with an overlay signifying the fidelity
between an ideal qubit [Eq. (2)] at the given (�;’) point and the measured state. The central longitude corresponds to ’ ¼ 0�, and
� ¼ 0� at the north pole. The small circles serve to point out which state we were aiming at. The ideal qubit is taken to have a
squeezing parameter r ¼ 0:38.
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crepancies in the weak-displacement regime. Because of
the losses the states are not pure, so opposite states on the
Bloch sphere are not completely orthogonal either. The
qubit basis states have an overlap of 0.26, while the oppo-
site states along the x axis and the y axis have overlaps of
0.13 and 0.25, respectively (as estimated from the model).

As these results show, we were able to realize with high
precision and relatively high fidelity the complete engi-
neering of a qubit of continuous-variable states. The simple
superposition preparation technique demonstrated here can
be straightforwardly applied to generation of coherent state
qubits. If the input state instead of squeezed vacuum were
one of the CSS states j�i � j��i, then the single photon
subtraction would change this input into the opposite state
j�i � j��i. Thus, combining this technique with the al-
ready existing CSS state [15], we should be able to gen-
erate an arbitrary superposition of these two states,
equivalent to the coherent state qubits that are cornerstones
of CSQC. As a side note, the currently measured basis
states, squeezed vacuum and squeezed photon, already
have a quite good resemblance with the ‘‘þ’’ CSS and
‘‘�’’ CSS states with fidelities of 81% and 68%, respec-
tively, for an amplitude � ¼ 1:0. It is also possible to
generate larger amplitude CSS states by cascading the
photon subtraction [26]. The results reported here can
therefore lead the way to prototypes of CSQC quantum
gates, likely to become important ingredients for attaining
the ultimate capacity in future quantum optical networks.
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Hyunseok Jeong and Chang-Woo Lee.
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FIG. 4 (color). Influence of displacement strength. Experi-
mentally obtained superposition weights (filled points and solid
curves, left axis) and fidelities with the intended target states
(unfilled points and dashed curves, right axis) versus the APD
count rate of displacement photons relative to squeezing photons
for two series of measurements with different superposition
phase factor. The curves are obtained from a theoretical model
with no free parameters. Note that the extreme data points
correspond to count rate ratios of 0 and infinity.
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