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Atomic ensembles have many potential applications in quantum information science. Owing to

collective enhancement, working with ensembles at high densities increases the efficiency of quantum

operations, but at the same time also increases the collision rate and leads to decoherence. Here we report

on experiments with optically trapped 87Rb atoms demonstrating a 20-fold increase of the coherence time

when a dynamical decoupling sequence with more than 200 pi pulses is applied. Using quantum process

tomography we demonstrate that a dense ensemble with an optical depth of 230 can be used as an atomic

memory with coherence times exceeding 3 seconds.
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Cold atomic ensembles can be used as an interface
between matter and photonic qubits in quantum networks
[1,2], and in recent years vast experimental advances in this
direction have been reported [3–8]. Quantum information,
which is mapped into the coherence between two atomic
internal states, is gradually lost due to inhomogeneities and
fluctuations in the energy difference between these states.
For trapped atoms the inhomogeneities are caused by
differential light shift in optical traps [9] or by differential
Zeeman shifts in magnetic traps, and by mean-field density
dependent interaction shifts [10]. Fluctuations arise due to
collisions which are inherent to the high densities required
to achieve a good overall efficiency of quantum operations
[11,12].

Though fluctuations at low frequencies can be overcome
by a single population inverting pulse—the celebrated
coherence echo technique [13,14]—as the collision rate
increases this is no longer possible due to higher frequency
components. Dynamical decoupling (DD) theories gener-
alize this technique to multipulse sequences by harnessing
symmetry properties of the coupling Hamiltonian [15–19].
Though DD was demonstrated in several experiments [20–
25], its use with atomic ensembles remains unexplored.
Here we study experimentally DD in a dense cold atomic
ensemble and report on a substantial suppression of colli-
sional decoherence. We also find that although the en-
semble is a non-Gaussian many-body system which is
almost decoupled from the environment, the coherence
time with DD is described well by an effective single
spin coupled to a Gaussian reservoir.

We consider atoms with internal states j1i and j2i,
trapped in a conservative optical potential. An effective
single particle Hamiltonian is given by

Ĥ ¼ @½!0 þ �ðtÞ�j2ih2j þ @�ðtÞj2ih1j þ H:c:; (1)

where!0 is the free space transition frequency between the
states, �ðtÞ is a random frequency detuning sequence
whose nature is determined by the potential inhomogene-
ities and collisions, and �ðtÞ is the external control field

which is used for the DD. Starting with an initial state

jc ð0Þi ¼ 2�1=2ðj1i þ j2iÞ and no external control fields,
the wave function at any given time is given in the rotating

frame by jc ðtÞi ¼ 2�1=2ðj1i þ e�i�ðtÞj2iÞ, where the phase
difference is given by �ðtÞ ¼ R

t
0 �ðtÞdt. A schematic plot

of three realizations of �ðtÞ is given in Fig. 1(a), and it can
be seen that the phase difference is accumulated in a
constant rate between collisions [26]. The ensemble coher-

ence is characterized by the functionCðtÞ ¼ jh�12ðtÞij
jh�12ð0Þij , where

FIG. 1 (color online). (a) Schematic drawing of the relative
phase between the two internal states for three atomic realiza-
tions. Without dynamical decoupling (dashed lines), the average
detuning, �ðtÞ, is changed after each collision. With DD pulses
(dotted vertical lines) the spread of the atomic phases is much
smaller (solid lines). The upper inset shows small oscillations
due to the fast periodic atomic motion in the trap. Since the os-
cillation period is shorter than all relevant time scales in our ex-
periment, we consider only �ðtÞ averaged over an oscillation pe-
riod [26]. (b) The experimental pulse sequence starts with a state
preparation, followed by a train of � pulses with alternated
phases to minimize the accumulation of errors due to pulse width
and frequency inaccuracies, and a final state detection. The dura-
tion of each � pulse is �0:5 ms and its average fidelity is
�0:995.
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�12 is the off-diagonal element of the reduced two-level
density matrix [19]. As an example, for a Gaussian phase
distribution, P�, with a standard deviation ��, we obtain

CðtÞ ¼ e��2
�
ðtÞ=2, which shows that the coherence decays as

the width of the phase distribution increases. The effect of a
population inverting pulse (� pulse) is to change the sign
of �, and a train of such pulses lead to a much narrower
phase distribution and slower decoherence [solid lines in
Fig. 1(a)].

The experiments are carried out with laser cooled
87Rb atoms trapped by two far-off-resonance laser beams
with a wavelength of 1064 nm crossing at an angle
of 28� [27]. The two relevant internal states are j1i ¼
jF ¼ 1;mf ¼ �1i and j2i ¼ jF ¼ 2;mf ¼ 1i in the

52S1=2 manifold, which are to first order Zeeman insensi-

tive to magnetic fluctuations in the applied magnetic field
of 3.2 G [10]. The external control is done by means of
two-photon transition (MW-rf photons). We measure the
internal state of the atoms by a fluorescence detection
scheme [27,28], and their density and temperature using
absorption imaging on a CCD camera. By gradually low-
ering the trapping laser intensity we reach the experimen-
tal conditions, at which there are typically 275 000 atoms at
a temperature of 1:7 �K, phase space density of 0.04,
average collision rate of 100 sec�1, and radial and axial
oscillation frequencies of !r ¼ 2�� 330 Hz and !a ¼
2�� 87 Hz, respectively. The typical inhomogeneous de-
cay time as measured in a Ramsey-like experiment is
�150 msec. The peak optical depth for a nonpolarized
resonant light is �230.

We employ a Carr-Purcell-Meiboom-Gill (CPMG) de-
coupling scheme [29] and show in what follows that for
collisional detuning fluctuations it is virtually optimal. The
pulse sequence is composed of n � pulses at times tk ¼
2k�1
2n twhere k ¼ 1 . . . n [see Fig. 1(b)], and we characterize

it by its effective Rabi frequency fDD ¼ n
2t . We study the

effect of the DD scheme by performing a quantum process
tomography (QPT). QPT enables us to reconstruct the �
matrix which gives a convenient way to calculate the
density matrix after the process, �out, in terms of the initial

density matrix, �in, by �out ¼ E½�in� ¼
P

k;lÊk�inÊ
y
l �kl,

where Ê ¼ ðÎ; X̂;�iŶ; ẐÞ with (Î, X̂, Ŷ, Ẑ) being the
Pauli matrices. In the experiment we start with a set of
initial states after which we apply the decoupling scheme
and measure �out by quantum state tomography (for more
details see the supplementary material [27]). The results of
a QPT of a DD sequence with fDD ¼ 35 Hz is depicted in
Fig. 2. There are two distinctive decay time scales for the
equatorial plane and the z axis, which corresponds to phase
damping noise processes and depolarizing noise processes
(T1), respectively. The former originates from collisional
fluctuations in � and it is the dominant noise process which
determines the ensemble coherence time, �c, which is
quantified by CðtÞ. The depolarization process is induced
by inelastic collisions, and its typical time scale is mea-

sured to be T1 ¼ 6 s [30]. The worst case fidelity of the
ensemble as a quantum memory, defined as F ¼
minjc ihc jE½jc ihc j�jc i, is calculated from the measured

� matrix to be F ¼ 0:83, 0.74, and 0.64 for 1, 2, and
3 seconds, respectively, which corresponds to an exponen-
tial decay time scale of �c ¼ 2:4 sec . The contraction of
the Bloch sphere is symmetric in the equatorial plane,
which indicates that the decoupling scheme is insensitive
to the stored superposition. We demonstrate this point with
a direct measurement in which we start with two orthogo-
nal initial states in the equatorial plain and scan the phase
of a final �=2 pulse added to the sequence and measure the
population at j2i normalized to its initial value. The results
depicted in the inset of Fig. 3 exhibit the same contrast
and preserve the �=2 phase shift between the two initial
states.
The decay of the coherence with a DD pulse sequence

and assuming a Gaussian phase distribution is given in a
system-reservoir framework by [19,31]

CðtÞ ¼ e�
R1

0
d!S�ð!ÞFð!tÞ=�!2

; (2)

where the argument is the overlap integral between the
fluctuations power spectrum, S�ð!Þ ¼ R1

�1h�ðtÞ�ð0Þi�
ei!tdt, and a filter function which encapsulates the infor-
mation on the DD pulse sequence and is given by Fð!tÞ ¼
1
2 j
P

n
k¼0ð�1Þkðei!tkþ1 � ei!tkÞj2 with t0 ¼ 0 and tnþ1 ¼ t.

For each atom �ðtÞ is a sequence of constant detunings
connected by ‘‘jumps’’ which occur after each collision.
Since the collision times follow Poisson statistics, the

FIG. 2 (color online). Quantum process tomography of dy-
namical decoupling with fDD ¼ 35 Hz. Any single-qubit density
matrix � can be mapped to a point in space �rð�Þ ¼
½trðX̂�Þ; trðŶ�Þ; trðẐ�Þ�, with (X̂, Ŷ, Ẑ) being the Pauli matrices.
The colors and lines are chosen for the initial states, �in, which
lie on a sphere with a radius 1. For each of these states we
calculate the process outcome, �out ¼ E½�in�, and plot it with its
initial color at �rð�outÞ. The contraction of the Bloch sphere is
more pronounced on the equatorial plane which shows that the
main noise process is phase damping, as descried by the
Hamiltonian of Eq. (1). There is also a rotation of the sphere
around the j1i � j2i axis at a rate of �9� sec�1 due to small
inaccuracies in the control field.
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detuning correlation function decays exponentially,

��ðtÞ ¼ h�ðtþ 0Þ�ð0Þi ¼ �2
�e

��jtj, where ��1 is the cor-

relation time of the detuning and �� is the standard devia-
tion of the detunings distribution. The power spectrum is
given by S�ð!Þ ¼ R1

�1 ��ðtÞei!tdt ¼ 2��2
�=ð�2 þ!2Þ.

By solving numerically Eq. (2) and leaving the ftigni¼1 as

free parameters, we find that the optimal decoupling se-

quence for a Lorentzian power spectrum is given by ti ¼
	þi�1
n�1þ2	 t, where i ¼ 1 . . . n and 0:5 � 	 � 1 is a numerical

factor which depends on n and t. For �t
n � 1 we find 	 �

0:5, for which we retrieve the CPMG pulse sequence. Fur-

thermore, even when �t
n � 1 the coherence time with the

CPMG pulse sequence differs by less than 1% from the op-
timal value. We have tested theoretically and experimen-
tally other DD schemes, in particular, the one suggested in
Ref. [18], and verified that they are indeed inferior to the
CPMG sequence in our Lorentzian fluctuations power
spectrum (for more details see the supplementary material
[27]).

We measure CðtÞ directly by preparing the atoms in the
superposition jc i ¼ 1ffiffi

2
p ðj1i þ j2iÞ, employ the DD pulse

sequence, and finally measure the length of the Bloch
vector with a quantum state tomography. Though CðtÞ
does not have to follow, a priori, some well defined func-
tion, the experimental results depicted in Fig. 3 show that
the data are well fitted by an exponentially decaying func-

tion e�t=�c , from which we extract the coherence time �c.

The exponential decay is expected in the Markovian limit,
where the decay time scale is much larger than the fluctua-
tions correlation time [19]. A measurement of the depen-
dence of the coherence time on the DD pulse rate is shown
in Fig. 4. We observe a quadratic increase of the coherence
time versus fDD up to 35 Hz, for which there is a 20-fold
improvement to more than 3 sec. For such long times the
effect of inelastic collisions (T1) already becomes signifi-
cant, and at higher pulse rates the coherence time even de-
creases probably due to imperfections in the control pulses.
In order to explain these results we present a qualitative

model for the coherence time. Without collisions the in-
homogeneous dephasing rate is proportional to ��. For
simplicity we assume that if a collision did not occur
between two consecutive � pulses the inhomogeneous
broadening is averaged out. If a collision occurred, how-
ever, the width of the ensemble phase distribution increases
by �f�1

DD��. The number of collisions up to a time t is
�colt, and since we add random variables (i.e., the accu-
mulated phase), the width of the phase distribution in-

creases as a square root of time: ��ðtÞ � f�1
DD��

ffiffiffiffiffiffiffiffiffiffi
�colt

p
.

For cold collisions in a three-dimensional (3D) harmonic
trap, the relation between the collision rate and the relaxa-
tion rate was shown to be �col ¼ 2:7 	 � [32]. The coher-
ence time, �c, is the time for which the width of phase
distribution is on the order of 1, yielding

�c � f2DD�
�2
� ��1; (3)

with a parabolic dependence on fDD. This result can be

also obtained from Eq. (2) by approximating Fð!tÞ
�ð!tÞ2 �

�Diracð!t� 2�fDDtÞ and using the Lorentzian power
spectrum.
Exact calculations of �c using Eq. (2) without fitting

parameters are presented in Fig. 4 in good agreement with
the experimental data. The calculations are done with a
Lorentzian power spectrum where the parameters � and��

are extracted from measured quantities. � is extracted from
the collision rate which is calculated using the measured
temperature, number of atoms, and trap oscillation fre-
quencies. The parameter �� is measured in a Ramsey ex-
periment at very low densities, where the collisions can be
disregarded and �� can be extracted from the measured
dephasing rate [27]. We also perform Monte Carlo simu-
lations, where we solve for the classical motion of atoms in
the trap including collisions, and calculate the Ramsey
signal by tracing each atom’s accumulated phase along
its trajectory. The results of the simulations are also de-
picted in Fig. 4, and agree well with both theory and
experiments. We conclude that the effect of collisions
can be indeed formulated as an effective single spin
Hamiltonian coupled to a reservoir. Moreover, although
the detunings of atoms trapped in a 3D harmonic trap are
not normally distributed [27], the distribution of their
accumulated phase can be well approximated by a
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FIG. 3 (color online). The ensemble coherence versus time
without DD (fDD ¼ 0 Hz) and with two representing DD pulse
rates, normalized to the initial coherence. The inset shows a
storage of two orthogonal initial states in the equatorial plane:
jc 1i ¼ ð1= ffiffiffi

2
p Þðj1i þ j2iÞ and jc 2i ¼ ð1= ffiffiffi

2
p Þðj1i þ ei�=2j2iÞ.

We add to the decoupling scheme another pulse independent
of the initial state with a phase and duration chosen to correct for
the small rotation of the Bloch sphere as was measured in the
QPT. We measure the population at j2i after 3 sec, normalized to
the initial population, versus the phase of a �=2 detection pulse.
The fringe contrast is not centered to 0.5 due to inelastic
m-changing transitions.
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Gaussian owing to the central limit theorem and the large
number of collisions involved.

Another prediction of Eq. (3) is the linear dependence of
the coherence time on ��1. In the experiment we change �
by reducing the density and collision rate while keeping the
temperature, and therefore ��, unchanged [26]. This is
accomplished by reducing the intensity of the cooling
lasers in the trap loading stage. In the inset of Fig. 4 we
plot ��1

c versus the average collision rate for a pulse rate of
fDD ¼ 8 Hz. As expected, the coherence time is inversely
proportional to the collision rate.

In conclusion, we have demonstrated that dynamical
decoupling can substantially reduce collisional decoher-
ence in a dense atomic ensemble. In the current work the
ensemble was treated as an effective single spin system
which accounts for storage schemes based on collinear
electromagnetically induced transparency [2]. A natural
extension is the application of dynamical decoupling to
W-type joint quantum states which are produced in Raman
scattering schemes [1,3]. Another promising prospect lies
in novel hybrid approaches to quantum computation com-
bining atomic ensembles and superconducting devices
[33], where the application of dynamical decoupling could
reduce the error probability during the characteristic
100 �s single-qubit gate to less than 10�4—below the

current estimated threshold for a fault-tolerant quantum
computation.
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FIG. 4 (color online). The coherence time versus the dynami-
cal decoupling pulse rate fDD. The experimental data (blue
circles) agree well both (i) with the theoretical prediction of
Eq. (2) taking a Lorentzian power spectrum (solid line) with
�� ¼ 23:8 sec�1 and � ¼ 37:5 sec�1 which were extracted
from measured quantities and with no fit parameters and
(ii) with molecular dynamics Monte Carlo simulations done
with 1000 atoms in a 3D harmonic trap with an inhomogeneous
decay time similar to the experiment (red squares). The error bar
is estimated from the fits shown in Fig. 3. The inset shows a
measurement of the dephasing rate for different collision rates
for fDD ¼ 8 Hz, demonstrating the linear dependence of Eq. (3).
The dotted line is a linear fit of the data.
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