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In a regular, flexible chain of Rydberg atoms, a single electronic excitation localizes on two atoms that

are in closer mutual proximity than all others. We show how the interplay between excitonic and atomic

motion causes electronic excitation and diatomic proximity to propagate through the Rydberg chain as a

combined pulse. In this manner entanglement is transferred adiabatically along the chain, reminiscent of

momentum transfer in Newton’s cradle.
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Nearly lossless transfer of momentum and energy
through a linear chain of masses was studied as early as
in the 17th century, exemplified by Newton’s cradle [1].
Newton’s cradle, the well-known tabletop experiment of
popular physics, in which the first and last member of a
suspended chain of metal balls periodically exchange os-
cillation energy, has recently found a modern implementa-
tion with ultracold atoms [2]. Stimulated by research on
photosynthesis [3] and organic dye aggregates [4], another
type of energy transfer has received more recent interest,
namely, the propagation of internal excitation due to elec-
tromagnetic interactions. Experiments indicate robust, co-
herent energy transport of this kind in systems as large as
photosynthetic light harvesting complexes [5], opening up
the avenue to consider the propagation of a particularly
‘‘fragile’’ quantum phenomenon: entanglement [6,7]. Here
we show for the example of a chain of ultracold Rydberg
atoms that mechanical momentum transfer interlinked with
coherent excitation migration can result in efficient trans-
port of entanglement.

Rydberg atoms have recently received much attention,
to a large part due to their strong long-range interactions,
with diverse consequences from dipole blockade [8] and
antiblockade [9,10] over long-range molecules [11,12] to
classical motion due to van der Waals interactions [13]. In
contrast to the latter, resonant dipole-dipole interactions
[14–17] intimately link motion and excitation transport.
Within an essential state picture, where only two electronic
Rydberg states per atom, labeled jai and jbi, are taken into
account, the transfer of excitation can be adequately de-
scribed by using the exciton theory of Frenkel [3]. For a
pair of atoms separated by a distance R, dipole-dipole
interactions have a Hamiltonian with structure H ¼
VðRÞðjabihbaj þ jbaihabjÞ, where VðRÞ scales like R�3.
It describes electronic excitation transfer, since a transition
of the first atom from jai to jbi is accompanied by the
reverse transition of the second atom. To see how this also
induces mechanical forces, we consider a superposition of
two-atom states like jabi � jbai, which are excitonic ei-
genstates ofH with eigenvalues�VðRÞ that parametrically
depend on the distance R. These provide adiabatic poten-

tials for the nuclear motion. The character of the motion
(e.g., fully repulsive or fully attractive) depends on the
exciton state [17]. Adiabatic motion of atoms in a longer
chain preserves the exciton character. Since the exciton
state for more than two atoms depends on the atomic
positions, excitation transport and motion become
interlinked.
In detail, we study the effect of resonant dipole-dipole

interactions on a regular linear chain of Rydberg atoms.
Initially we impose a perturbation in the distances between
the atoms by placing two atoms close together, with a
localized exciton state built on this diatomic proximity,
chosen repulsively. We demonstrate a strong correlation
between the resulting exciton dynamics and the motion of
the atoms: The combined pulse of atomic displacements
and localized electronic excitation propagates adiabati-
cally through the chain in a manner reminiscent of
Newton’s cradle.
We treat this complex many-body problem using a

mixed quantum-classical approach (Tully’s surface hop-
ping method [18,19]). It allows us to determine the dy-
namics of the atomic wave packets together with the
electronic excitation transport in order to quantify the
entanglement in time. For short chains, where a full quan-
tum mechanical treatment is possible, the numerically
exact solution is in perfect agreement with the quantum-
classical result.
We study a linear chain of N identical atoms with mass

M and denote by Rn the position of the nth atom (nuclear
coordinates). All but one of the N atoms shall be in a
Rydberg state j�si, i.e., with principal quantum number
� and angular momentum l ¼ 0. Just a single atom is in the
state j�pi, i.e., has angular momentum l ¼ 1. The latter
will be called the ‘‘excited’’ state hereafter. It can migrate
along the chain by means of dipole-dipole interactions
[16], which conserve the number of excitations. We can
restrict ourselves to the single excitation Hilbert space,
whose electronic part is spanned by j�ni �
js � � �p � � � si, see Fig. 1(b), since for the scenario we
consider, transitions to other states are negligible. The
distance Rnm � jRm � Rnj between the atoms n and m is
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so large that the overlap of their electronic wave functions
can be neglected. The total Hamiltonian of the system is

HðRÞ ¼ � XN

n¼1

@
2

2M
r2

Rn
þHelðRÞ; (1)

where R ¼ ðR1; . . . ; RNÞT is the vector of nuclear posi-
tions. The electronic Hamiltonian

HelðRÞ ¼ X

nm

VnmðRnmÞj�nih�mj (2)

contains the dipole-dipole coupling between atoms n and
m. We consider the case with all atoms in ml ¼ 0 azimu-
thal angular momentum states, such that VnmðRnmÞ ¼
��2=R3

nm without angular dependence [16].
Our numerical calculations use an atomic mass M ¼

11 000 a:u: (which is roughly the mass of lithium) and a
transition dipole moment � ¼ 1000 a:u:, corresponding to
transitions between s and p states with n � 30; . . . ; 40.

The full many-body problem posed by the Hamiltonian
(1) becomes quickly intractable as the number of atoms N
is increased. For small N, however, it is no problem to
directly solve the equation of motion. Expanding the full
wave function in electronic (diabatic) states according to
j�ðRÞi ¼ PN

n¼1 �nðRÞj�ni, we arrive at the Schrödinger

equation (in atomic units)

i _�nðRÞ ¼ XN

m¼1

�
�r2

Rm

2M
�nðRÞ þ VnmðRnmÞ�mðRÞ

�
: (3)

In order to validate the semiclassical method pre-
sented below, which in turn will be faithfully used
for longer chains, we solve Eq. (3) for N ¼ 3. In our
figures we will not show the full N-dimensional
nuclear wave function but focus on the more intuitive total
atomic density, which is given by nðRÞ ¼PN

j¼1

PN
m¼1

R
dN�1Rfjgj�mðRÞj2. Here

R
dN�1Rfjg de-

notes integration over all but the jth nuclear coordinate.
The density nðRÞ gives the probability to find an atom at
position R.

The diabatic representation of the wave function allows
a straightforward propagation for short chains. For longer
chains and for the interpretation of the results, the adiabatic

representation j�ðRÞi ¼ P
N
n¼1

~�nðRÞj’nðRÞi is helpful.

Here the adiabatic basis j’ni is defined via
HelðRÞj’nðRÞi ¼ UnðRÞj’nðRÞi. For each R there are
N excitonic eigenstates j’nðRÞi labeled by the index n.
The corresponding eigenenergies UnðRÞ define the adia-
batic potential surfaces. The two representations are re-

lated by ~�nðRÞ ¼ P
mh’nðRÞj�mi�mðRÞ.

For long chains, we solve the time-dependent
Schrödinger equation with Hamiltonian (1) using a mixed
quantum-classical method, Tully’s surface hopping algo-
rithm [18,19]. In this approach an ensemble of trajectories
is propagated, and each trajectory moves classically on a
single adiabatic surface UmðRÞ, except for the possibility
of instantaneous switches among the adiabatic states.
The equations of motion read

i
@

@t
~ck ¼ UkðRÞ~ck � i

XN

q¼1

_R �dkq~cq; (4)

M €R ¼ �rRh’mðRÞjHelðRÞj’mðRÞi: (5)

The N complex amplitudes ~ck define the electronic state
via j�ðR; tÞi ¼ P

N
n¼1 ~cnðtÞj’nðR; tÞi and the dkq are non-

adiabatic coupling vectors. Besides their appearance in
Eq. (4), they also control the likelihood of stochastic jumps
from the current surfacem to another surfacem0 in Eq. (5),
which is proportional to j _R � dm0mj. Further details about
this scheme can be found in Refs. [17,19,20]. The under-
lying quantum-classical correspondence is discussed in
Refs. [21,22]. We randomize the initial classical positions
and velocities for the trajectories according to the Wigner
distribution of the initial state, described in Eq. (6). This is
essential for a correct description.
Initially we assume that the Rydberg atoms are arranged

in a straight line. The distance between the first two atoms
is denoted by a and assumed shorter than the equal dis-
tances (x0) between the other atoms, as sketched in Fig. 1.
For fixed classical positions, one of the N eigenstates of

the electronic Hamiltonian (2) leads to a situation where
initially all atoms repel each other [17]. In the following we
will focus on this state, which we label with ‘‘rep.’’ Since
the dipole-dipole interaction between the first two atoms is
much stronger than between all others, the excitation in
this repulsive state is mainly localized on these two atoms.
For a � x0 this initial state can be approximately written

as ðj�1i � j�2i=
ffiffiffi
2

p
. In Fig. 1(c) the electronic population

on the various atoms is shown as a function of a=x0. For
our simulations, we have taken x0 ¼ 5 �m and a ¼
2 �m, i.e., a=x0 ¼ 0:4. Then the dipole-dipole interaction
between the first two atoms is about 5 times larger than for
the rest of the chain and more than 90% of the excitation is
localized on the first two atoms. From the pointlike (clas-
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FIG. 1 (color online). (a) Sketch of the initial total density
distribution of N ¼ 5 Rydberg atoms. (b) Visualization of the
electronic state j�1i. (c) Trapping of the electronic excitation in
the repulsive exciton state by a perturbation of the regular chain.
Shown are the populations pn ¼ jh�nj’repðRÞij2 as a function of
a=x0.
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sical) nuclear positions, we now move to a quantum nu-
clear wave function.

The spatial wave function of each atom is assumed
Gaussian with a standard deviation �0. Hence, we take
the complete initial wave function (i.e., containing nuclear
and excitonic degrees of freedom) as

j�ðt ¼ 0Þi ¼ j’repðRÞiY
N

n¼1

�GðRnÞ;

�GðRnÞ ¼ N expð�½Rn � R0n�2=2�2
0Þ;

(6)

where R0n is the center of mass of the nth Gaussian andN
is a normalization factor.

To confirm the applicability of the quantum-classical
numerical treatment, we consider the smallest nontrivial
chain N ¼ 3. Figure 2 shows the quantum mechanical
probability to find an atom at a certain position, in perfect
agreement with the corresponding graph obtained with the
quantum-classical hybrid approach.

The excellent agreement between the two disparate
methods for N ¼ 3 gives confidence that Tully’s surface
hopping produces reliable results also for longer chains,
such asN ¼ 7, which we consider now. The corresponding
atomic motion and excitation transfer, when starting in the
exciton state with highest energy, are shown in Fig. 3. Let
us first consider the atomic motion. As expected, initially
the two excited atoms strongly repel each other. When
atom 2 has approached atom 3, the main repulsion is
now between those two, causing atom 2 to slow down

and atom 3 to accelerate. In this way the initial momentum
is transferred through the chain to atom 7, realizing a
microscopic version of Newton’s cradle.
To lay the basis for the treatment of entanglement dy-

namics, we next discuss the excitation transfer, shown in
Fig. 3(c), which is strongly coupled to the atomic motion as
can be seen in Fig. 3(b). The excitation gets transferred,
always remaining localized on the two instantaneously
nearest atoms, in accordance with the structure of exciton
eigenstates outlined in [17]. After 5:5 �s the momentum
transferred through the chain kicks out the last atom, and a
well-defined close proximity pair no longer exists. The
exciton state then assumes the shape for an equidistant
chain, delocalized over the entire chain (consisting of the
remaining N � 2 atoms), which subsequently slowly
spreads out. From the occupation of the initially populated
repulsive adiabatic state, which is also shown in Fig. 3(b),

FIG. 2 (color online). Nuclear dynamics in the case N ¼ 3.
The time evolution of the total atomic density nðx; tÞ (a) is shown
together with a comparison of Tully’s surface hopping calcula-
tions (black solid line) with the full quantum evolution (red
dashed line) in the other panels. (b) Spatial slice nðx; t0Þ, with t0
as indicated by the first vertical white lines in (a). Arbitrary units.
(c) Relative population n2 ¼

R
dRj ~�2ðRÞj2 (n2 ¼ j~c2j2 in

Tully’s algorithm) on the adiabatic surface (index 2) that is
energetically nearest to the initial repulsive one. This is a
measure of the propensity of nonadiabatic transitions. The
deviation of curves in (b) and (c) is shown magnified in the
insets. (d) Initial repulsive state.

FIG. 3 (color online). Dynamics of atomic motion and excita-
tion transfer. (a) Total atomic density averaged over 105 realiza-
tions. We actually plot

ffiffiffi
n

p
. (b) Mean trajectories of the

individual atoms (white) and electronic excitation probabilities
(diabatic populations) jcmj2, cm ¼ P

mO
T
nm~cm. The latter are

encoded as the width of the copper shading surrounding each
trajectory. (c) Population on the adiabatic surface ‘‘rep’’ (black
line) and individual diabatic populations. (d) Purity P ¼ Tr½�̂2�
of the reduced electronic density matrix �̂ (solid green line) and
bipartite entanglement En;nþ1 for neighboring atoms as defined

in the text. The dotted line indicates 1.
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we can deduce that the evolution is largely adiabatic.
Nonadiabatic effects occur only in a small interval around
t ¼ 5:5 �s, when the last atom leaves the chain.

So far we have described transfer of momentum and
kinetic energy through the Rydberg chain, both of which
would also occur in a classical Newton’s cradle. However,
the microscopic excitation migration also leads to a trans-
port of entanglement, which has no classical equivalent. In
the spirit of Newton’s cradle we focus on electronic en-
tanglement between two atoms, which we will quantify
with the bipartite entanglement of formation [23,24]. To
this end we need the reduced density matrix �̂ ¼P

n;m�nmj�nih�mj, describing the electronic state of the

system, after tracing over the atomic positions. The matrix
elements�nm are given by�nm ¼ R

dNR��
nðRÞ�mðRÞ for

the full quantum calculations and �nm ¼ c�ncm for the
surface hopping method. In the latter case the overbar
denotes the trajectory average and cn ¼ P

mO
T
nm~cm are

the coefficients in the diabatic basis. From �̂ we then
construct the binary reduced electronic density matrix of

atoms a and b by �̂ab ¼ Trfa;bg½�̂�. The symbol Trfa;bg½� � ��
denotes the trace over the electronic states for all atoms
other than a; b. The remaining reduced subspace of atoms
a and b is spanned by jppi, jpsi, jspi, jssi. Because of the
structure of the j�ni, the only nonvanishing matrix ele-

ments of �̂ab are hpsj�̂abjpsi ¼ �aa, hspj�̂abjspi ¼ �bb,

hpsj�̂abjspi ¼ hspj�̂abjpsi� ¼ �ba, and hssj�̂abjssi ¼P
c�fa;bg�cc. From the matrix �̂ we can derive the concur-

rence Cab ¼ 2j�abj as outlined in [23]. The concurrence is
already a measure of entanglement with 0 	 Cab 	 1,
from which we finally obtain the entanglement of forma-
tion 0 	 EabðCabÞ 	 1 as described in [23,24].

As can be seen in Fig. 3(d), the initially perfect entan-
glement between atom 1 and atom 2 is transported through
the chain with only minor losses up to the point where the
final atom leaves the chain around t ¼ 5:5 �s [25]. At that
moment, the exciton state delocalizes over the entire chain.
Entanglement is then shared among all remaining atoms,
with a resulting drop of bipartite entanglement.

In summary, for an aggregate of Rydberg atoms in the
form of a linear chain, we have identified a dynamical
mode that links the motion of the atoms intimately with
the coherent propagation of a single electronic excitation
along the chain. Adiabatic transport ensures that the exci-
tation remains spatially localized near a diatomic proxim-
ity passing through the chain. Akin to the transfer of almost
macroscopic quantities, energy and momentum, in
Newton’s cradle, the mode transports localized coherent
excitation and electronic entanglement along the chain. For
the underlying quantum many-body problem we have
demonstrated the applicability of Tully’s surface hopping

method [18,19] by comparison with exact calculations.
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