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We propose a theory of adiabaticity in quantum Markovian dynamics based on a decomposition of the

Hilbert space induced by the asymptotic behavior of the Lindblad semigroup. A central idea of our ap-

proach is that the natural generalization of the concept of eigenspace of the Hamiltonian in the case of

Markovian dynamics is a noiseless subsystem with a minimal noisy cofactor. Unlike previous attempts to

define adiabaticity for open systems, our approach deals exclusively with physical entities and provides a

simple, intuitive picture at the Hilbert-space level, linking the notion of adiabaticity to the theory of noise-

less subsystems. As two applications of our theory, we propose a general framework for decoherence-

assisted computation in noiseless codes and a dissipation-driven approach to holonomic computation

based on adiabatic dragging of subsystems that is generally not achievable by nondissipative means.
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Introduction.—The adiabatic theorem is a simple and
powerful result that has been known since the early days of
quantum mechanics [1,2]. It states roughly that a closed
system in an eigenstate of a continuously perturbed
Hamiltonian remains in an instantaneous eigenstate in the
limit of slow perturbations if the corresponding eigenvalue
is separated from the rest of the spectrum by a gap.
Quantum adiabaticity has applications in many areas, in-
cluding quantum chemistry [3], geometric phases [4,5],
quantum Hall effect [6], STIRAP [7], and quantum phase
transitions [8]. More recently, the adiabatic theorem has
been the subject of increased interest in relation to quantum
information processing, where it has served as a basis for a
variety of schemes, including holonomic quantum compu-
tation [9] and adiabatic quantum algorithms [10].

Given the importance of the concept of adiabaticity in
closed quantum systems, it is natural to ask how this
concept extends to the dynamics of systems interacting
with an environment. This question is of particular in-
terest from the point of view of quantum information
processing where decoherence is a major obstacle to the
construction of reliable quantum devices, and at the same
time nonunitary processes are an important tool for
quantum control. In Ref. [11], Sarandy and Lidar pro-
posed an approach to the adiabatic dynamics of open
quantum systems, defining adiabaticity as the regime in
which the operator subspaces corresponding to the
instantaneous Jordan blocks of the generator of the dynam-
ics evolve independently (for adiabaticity in weakly open
systems, see Ref. [12]). This definition is motivated
by the formal analogy between the Schrödinger equa-
tion and the time-dependent Markovian master equa-
tion written in a coherence basis, both being first-order
linear vector differential equations with the dif-
ference that the generator of the master equation is gen-
erally not diagonalizable (hence the Jordan decomposi-
tion). But while in closed systems the phenomenon

of adiabaticity concerns the decoupled evolution of eigen-
spaces of the Hamiltonian which themselves are Hilbert
spaces containing physical states, the Jordan blocks corre-
spond to generally nonorthogonal subspaces of the space of
linear operators that need not contain density matrices or
even observables and may decay to zero even when mu-
tually decoupled. In the present Letter, we propose a differ-
ent approach, based primarily on physical considerations,
which yields an inequivalent picture of open-system adia-
baticity that links adiabatic dynamics to the theory of
noiseless subsystems [13].
Taking as a ground the basic physical characteristic of

adiabatic closed-system evolutions—namely, that these are
quasistatic evolutions where under sufficiently slow
changes of the Hamiltonian a system in a stationary state
evolves so as to remain in a stationary state with respect to
the changed Hamiltonian—we look for a generalization of
this phenomenon to the case of Markovian dynamics. The
key insight of our approach is that the natural general-
ization of the eigenspaces of the Hamiltonian correspond-
ing to distinct eigenvalues are noiseless subsystems whose
noiseful cofactors support unique fixed states. A decom-
position of the Hilbert space into such subsystems arises
naturally from the asymptotic behavior of the Lindblad
semigroup [14]. We define adiabaticity as the regime in
which the stationary states over such a noiseless subsystem
and its cofactor remain stationary with respect to the
Lindbladian as it changes. We derive an adiabatic theorem
based on this definition.
To illustrate the utility of our formalism, we propose two

applications. One is a framework for decoherence-assisted
computation in noiseless codes which generalizes the ap-
proach of Beige et al. [15] to subsystems and general noise
models. The other is a dissipation-driven approach to
holonomic quantum computation based on adiabatic
‘‘dragging’’ of subsystems [16] along paths that are gen-
erally not achievable by nondissipative means.

PRL 105, 050503 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending
30 JULY 2010

0031-9007=10=105(5)=050503(4) 050503-1 � 2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.105.050503


Generalization of eigenspaces.—Our starting point is
the observation that the eigenstates of a Hamiltonian H
are the stationary state vectors of its dynamics. In particu-
lar, all stationary density matrices under the evolution
d�=dt ¼ �i½H;�� (we set @ ¼ 1) have the direct-sum
form � ¼ �ipi�i,

P
ipi ¼ 1, pi � 0, where �i are density

matrices over the eigenspaces H i of H corresponding to
distinct eigenvalues. In more general quantum processes,
the stationary states are organized as operators over noise-
less subsystems tensored with a fixed density matrix over
the corresponding noiseful cosubsystem [17]. Consider a
time-homogenous finite-dimensional Markovian dynamics
described by the Lindblad equation [18]

d�

dt
¼�i½H;��þX

i

�
Li�L

y
i �

1

2
Ly
i Li��1

2
�Ly

i Li

�
�L�;

(1)

where Li are Lindblad operators. As shown in Ref. [14],
Eq. (1) induces a decomposition of the Hilbert space

H ¼ �
ij
H A

ij �H B
j �K; (2)

whereH A
ij are noiseless subsystems [13],H B

j are noiseful

subsystems that support unique fixed states, and K is a
decaying subspace. More particularly, it was shown that for
any initial state �ð0Þ, the solution of Eq. (1) satisfies

9fpk; �
A
k g: limt!1j�ðtÞ � �

j
pje

�iHAt
j �A

j e
iHAt

j � %B
j j ¼ 0; (3)

where �A
j are density matrices on the unitarily noiseless

subsystems H A
j ¼ �iH A

ij evolving under the

Hamiltonians HA
j , %B

j are fixed full-support states on

H B
j , and

P
kpk ¼ 1, pk � 0. The noiseless subsystems

H A
ij are the eigenspaces of HA

j . The stationary states

have the form � ¼ �ijpij�
A
ij � %B

j ,
P

ijpij ¼ 1; pij � 0,

where �A
ij are density matrices on H A

ij. This suggests

that the subsystems H A
ij whose cofactors H B

j support

unique fixed states %B
j can be thought of as the generaliza-

tion of eigenspaces corresponding to distinct eigenvalues.
How do we find the decomposition (2) for a given

Lindbladian L? An algorithm for finding the noiseless
subsystems of a completely positive trace-preserving
(CPTP) map that runs in time O½ðdimH Þ6� was described
in Ref. [17] (see also Ref. [19]). It is based on finding the
left and right operator eigenspaces corresponding to the
eigenvalue 1 of the CPTP map. Since Eq. (1) is equivalent
to the continuous application of an infinitesimal CPTP
map, the same algorithm can be used here (the eigenvalue
1 of the map translates to eigenvalue 0 of L).

Before we introduce adiabaticity for Markovian dynam-
ics, let us briefly review the closed-system case.

Adiabaticity in closed systems.—Consider a time-
dependent Hamiltonian Hðt=TÞ changing along a differ-
entiable curve HðsÞ, s 2 ½0; 1�. Let �iðsÞ be an eigenvalue
of HðsÞ with multiplicity m, and PiðsÞ be the (twice-
differentiable) projector on the corresponding eigenspace

H iðsÞ ¼ PiðsÞH . [Note that m ¼ constðsÞ implies that
�iðsÞ is separated from the rest of the spectrum by a gap.
The adiabatic theorem has been extended to cases without
a gap [20], but in this Letter we restrict it to the standard
formulation.] The eigenspace H iðt=TÞ is said to evolve
adiabatically under Hðt=TÞ if any state initially in H ið0Þ
remains inH iðt=TÞ, t 2 ½0; T�. Equivalently, if we change
the basis via a unitary UðsÞ so that Pi becomes fixed, in the
new basis the dynamics is driven by the effective
Hamiltonian H0ðt=TÞ ¼ ~Hðt=TÞ þ 1

T Vðt=TÞ, where
~HðsÞ ¼ UðsÞHðsÞUðsÞy ¼ �iðsÞPi þ ~H?

i ðsÞ with ~H?
i ðsÞ

having support on the orthogonal complement of H i,

and VðsÞ ¼ i dUðsÞ
ds UyðsÞ. Adiabaticity then refers to the

regime in which any state initially in H i remains in H i

despite the action of 1
T Vðt=TÞ. The adiabatic theorem states

[2] that in the limit of large T, one approaches perfect
adiabaticity where the states in H i evolve via the unitary
UiðsÞ ¼ T expð� i

R
s
0 PiVðqÞPidqÞ where T denotes

time ordering. The error scales with T asOð 1
T�Þ, where�>

0 is a fixed energy scale (e.g., the energy gap).
Note that unlike the ‘‘folk’’ adiabatic condition which is

known to be insufficient [21], this theorem (similarly to the
one derived below) is concerned with the scaling of the
error as a function of T for a fixed curve HðsÞ.
Adiabaticity in Markovian dynamics.—Consider a time-

dependent Lindbladian Lðt=TÞ changing along a differ-
entiable curveLðsÞ, s 2 ½0; 1�. For every s,LðsÞ induces a
decomposition of the Hilbert space H ¼ �ijH A

ijðsÞ �
H B

j ðsÞ �KðsÞ as explained earlier. Let H A
klðsÞ and

H B
l ðsÞ [ dimH A

klðsÞ ¼ m, dimH B
l ðsÞ ¼ n] be two sub-

systems of the type above, and let P klðsÞ [P klðsÞ� ¼
TrBfPAB

kl ðsÞ�PAB
kl ðsÞg � %B

l ðsÞ where PAB
kl ðsÞ is the projector

on H A
klðsÞ �H B

l ðsÞ and TrB denotes partial trace over
H B

l ] be the (twice-differentiable) superoperator projector

on the fixed points over H A
klðsÞ �H B

l ðsÞ.
Note.—Similarly to the closed-system case, the assump-

tion that dimH A
klðsÞ and dimH B

l ðsÞ are constant implies

an analogue of the gap condition (see [22]).
Definition.—The noiseless subsystem H A

klðt=TÞ and its
noisy cofactor H B

l ðt=TÞ evolve adiabatically under

Lðt=TÞ, if any state over H A
klð0Þ �H B

l ð0Þ of the form
�ð0Þ ¼ �ð0ÞAkl � %B

l ð0Þ evolves to a state �ðtÞ ¼ �ðtÞAkl �
%B
l ðt=TÞ over H A

klðt=TÞ �H B
l ðt=TÞ, t 2 ½0; T�.

As in the case of closed systems, it is convenient to
consider a basis rotated by a unitary UðsÞ, in which H A

kl

and H B
l are fixed. In this basis, the master equation is

d�

dt
¼ � i

T
½Vðt=TÞ; �� þ ~Lðt=TÞ�; (4)

where ~LðsÞ is the Lindbladian with HðsÞ replaced by
UðsÞHðsÞUðsÞy and LiðsÞ by UðsÞLiðsÞUðsÞy, and VðsÞ ¼
i dUðsÞ

ds UðsÞy. (We will not use a different notation for � in

this basis but will keep in mind the basis we are working
in.) Adiabaticity then means that any state �ð0Þ ¼ �A

klð0Þ �
%B
l ð0Þ remains of the form �ðtÞ ¼ �A

klðtÞ � %B
l ðt=TÞ despite

the perturbation 1
T Vðt=TÞ.
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Theorem.—Consider Markovian dynamics satisfying the
above assumptions. In the limit of large T, perfect adia-

baticity is approached with an error that scales as Oð
ffiffiffiffiffi
1
T�

q
Þ,

where �> 0 is some fixed energy scale. In the adiabatic
limit, the states inside H A

kl evolve under the unitary
UA

klðsÞ ¼ T expð�i
R
s
0 TrBfPAB

kl VðqÞPAB
kl I

A
kl � %B

l ðqÞgdqÞ.
Proof.—Let us divide the total time T into N steps, each

of length �t, T ¼ N�t. We will take �t ¼ N=� (hence,

T ¼ N2=�) such that when N ! 1, �t is short on the time
scale of change of the Lindbladian but long on the time
scale for reaching the asymptotic regime of the instanta-
neous Lindbladian. The differentiability assumptions about

LðsÞ and P klðsÞ imply that we can write ~Lðtþt0
T Þ ¼ ~Lð tTÞ þ

Oð1NÞ, Vðtþt0
T Þ ¼ Vð tTÞ þOð1NÞ, t0 2 ½0; �t�. The evolution of

the density matrix during a single time step is then

�ðtÞ ! �ðtþ �tÞ
¼ T e

R
�t

0
dt0 ~Lðtþt0

T Þ�ðtÞ � i

T

Z �t

0
dt0e ~Lðt=TÞð�t�t0Þ

�
�
V

�
t

T

�
; e

~Lðt=TÞt0�ðtÞ
�
þO

�
1

N2

�
: (5)

Assume that the state at time t has the form

�ðtÞ ¼ �A
klðtÞ �

�
%B
l

�
t

T

�
þO

�
1

N

��
þO

�
1

N2

�
: (6)

Then the first term on the right-hand side of Eq. (5) is

T e
R

�t

0
dt0 ~Lðtþt0

T Þ�ðtÞ ¼ �A
klðtÞ � ½%B

l ð tTÞ þ Oð1NÞ� þ Oð 1
N2Þ,

since H A
kl is noiseless and T e

R
�t

0
dt0 ~Lðtþt0

T Þ ¼ e�t
~Lð tTÞ þ

Oð1NÞ, so for large �t the state on H B
l decays to %B

l ð tTÞ þ
Oð1NÞ (see the supplementary material [22] for an exact

relation to the decay rate). For the second term, ignoring
errors of order Oð 1

N2Þ, we can use �ðtÞ ¼ �A
klðtÞ � %B

l ð tTÞ.
But e

~Lð tTÞt0 leaves �ðtÞ invariant, so this term becomes
�i
T

R
�t
0 dt0e ~Lð tTÞð�t�t0Þ½Vð tTÞ; �A

klðtÞ � %B
l ð tTÞ�. Using

noiseless-subsystem properties of the Lindbladian
[23,24], in the supplementary material [22] we show that

this term is equal to �i
T

R
�t
0 dt0e ~Lð tTÞð�t�t0ÞP kl½Vð tTÞ;�A

klðtÞ�
%B
l ð tTÞ�þOð 1

N2Þ. But ~LðsÞP kl ¼ 0, so the integral

yields �i�t
T P kl½Vð tTÞ; �A

klðtÞ � %B
l ð tTÞ� ¼ �i �tT �

½TrBfPAB
kl Vð tTÞPAB

kl I
A
kl � %B

l ð tTÞg; �A
klðtÞ� � %B

l ð tTÞ (the last in-

equality can be verified by a simple algebra).
We therefore see that if the initial state is of the form (6),

it will remain of this form for all times, up to an error

Oð1NÞ ¼ Oð
ffiffiffiffiffi
1
�T

q
Þ resulting from the accumulation of the

errors Oð 1
N2Þ at every step. Moreover, we see that the re-

duced density matrix onH A
kl satisfies the difference equa-

tion �A
klðtþ �tÞ � �A

klðtÞ ¼ � i�t
T ½TrBfPAB

kl Vð tTÞPAB
kl I

A
kl �

%B
l ð tTÞg; �A

klðtÞ� þOð 1
N2Þ, which in the limit N ! 1

yields the differential equation @
@s �

A
klðTsÞ ¼

�i½TrBfPAB
kl VðsÞPAB

kl I
A
kl � %B

l ðsÞg; �A
klðTsÞ� describing the

effective evolution stated in the theorem.

Note.—Our theorem includes an adiabatic theorem for
closed systems as a special case. However, the convergence
rate stated in our theorem is weaker than the standard one

[the error is Oð
ffiffiffiffiffi
1
�T

q
Þ as opposed Oð 1

�TÞ] since our proof

captures dissipative cases as well. (In the supplementary
material [22], we describe a natural energy scale � asso-
ciated with the curve LðsÞ, which can be regarded as a
generalization of the minimum energy gap.)
Decoherence-assisted computation in noiseless codes.—

Computation in noiseless subsystems requires operations
that keep the information inside the code [25]. However,
the Hamiltonians that preserve the code in general may be
rather complicated and may not be naturally available in a
particular experimental setup. Thus strategies for achiev-
ing encoded universality [26] by other means are of par-
ticular interest [27]. An immediate implication of the
above theorem is that for the common case of time-
homogenous Markovian noise with Lindbladian L [to

play the role of ~Lðt=TÞ in Eq. (4)], any Hamiltonian
perturbation 1

T Vðt=TÞ acting during t 2 ½0; T� would give

rise to (possibly nontrivial) unitary evolutions inside the
noiseless subsystems H A

ij of L within an arbitrary preci-

sion for sufficiently large T. Thus given a set of available
interactions fV�g that can be turned on with variable

strength, for a given subsystem H A
kl one can produce the

set of effective interactions

Veff
� ¼ TrBðPAB

kl V�P
AB
kl I

A
kl � %B

l Þ: (7)

(Note that preparation of the states onH B
l is not needed as

they quickly decay to the fixed points.) Encoded universal-
ity is achieved if the set fVeff

� g spans the Lie algebra suðmÞ
over H A

kl. Remarkably this is possible even if the
Hamiltonians fV�g commute (see example below).

Such an approach was first proposed in Ref. [15] for
noiseless subspaces ( dimH B

l ¼ 1) under certain noise
models that can be interpreted as continuous Zeno mea-
surements projecting onto the subspace. Equation (7) pro-
vides a generalization of this idea to noiseless subsystems
(that may exist even when no noiseless subspaces exist)
and arbitrary time-homogenous Markovian models. As an
example, we have studied [22] a two-level noiseless sub-
system of three spin- 12 particles under collective decoher-

ence [13]. The noiseless subsystem involves highly
entangled states, and nonlocal interactions are in principle
required to perform operations on the encoded qubit.
However, we find that the decoherence process itself can
be used to induce an effective universal set of gates on the
code by acting with local Hamiltonians.
Holonomic quantum computation via dissipation.—In

the previous method, we assumed that the perturbation
1
T VðsÞ is applied by the experimenter. However, the con-

clusions are valid also if we assume that the description is
with respect to an instantaneous basis of a time-dependent
noiseless subsystem H A

klðsÞ of LðsÞ, where the perturba-
tion now arises from the time dependence of the basis. As
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LðsÞ acts trivially on H A
klðsÞ, the effective transformation

in H A
klðsÞ is not of dynamical origin. Indeed, in the adia-

batic limit, an initial state �ABð0Þ over H A
klð0Þ �H B

l ð0Þ
transforms via the superoperator lim�s!0P klð1ÞP klð1�
�sÞ . . .P klð�sÞP klð0Þ which is a geometric quantity de-
fined via the projectors P klðsÞ. But the effective unitary
onH A

klðsÞ depends on the choice of basis forH A
klðsÞ and is

not gauge invariant. However, if H A
klðsÞ is taken around a

loop, H A
klð0Þ ¼ H A

klð1Þ, so that the final basis is the same

as the initial one, the resultant transformation is a gauge-
invariant quantity that generalizes the standard holonomy
associated with parallel transport of subspaces [5]. We note
that the idea of adiabatically ‘‘dragging’’ a subsystem
(rather than a subspace) along suitable paths in order to
perform geometric gates inside it has been proposed for the
case of Hamiltonian dynamics as a powerful tool for robust
computation [16]. However, a subsystem cannot be
dragged along an arbitrary path H AðsÞ by a Hamiltonian
since some paths necessarily give rise to correlations be-
tween H AðsÞ and H BðsÞ. This problem does not exist
here since the Lindbladian acting on H BðsÞ severs any
such correlations. (For dissipation-driven holonomies in
subspaces, see Ref. [28].)

The mathematical foundations of these geometric trans-
formations will be studied elsewhere. In the supplementary
material [22], we show that the method can be used for
universal quantum computation. We use a slowly rotating
depolarizing type of Lindbladian as an example.

Conclusion.—We introduced a theory of adiabatic
Markovian dynamics that relates the notion of adiabaticity
to the theory of noiseless subsystems. We proved an adia-
batic theorem for such dynamics and proposed two novel
methods of quantum information processing based on it—-
decoherence-assisted computation in noiseless subsystems
and dissipation-driven holonomic computation—that add
to the developing picture of dissipation as a powerful
quantum computation primitive [29]. A natural problem
for future research would be to find exact bounds on the
adiabatic error in Markovian dynamics similar to those
obtained for closed systems, e.g., in Ref. [30].
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