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We present a method to synthesize an arbitrary quantum state of two superconducting resonators. This

state-synthesis algorithm utilizes a coherent interaction of each resonator with a tunable artificial atom to

create entangled quantum superpositions of photon number (Fock) states in the resonators. We theoreti-

cally analyze this approach, showing that it can efficiently synthesize NOON states, with large photon

numbers, using existing technology.
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The development of quantum coherent systems for in-
formation processing has traditionally focused on quantum
bits (qubits), in which information is stored in two quan-
tum states of a system. Over the past two decades many
physical systems have been devised in which qubits can
be addressed and manipulated, including atoms, ions,
photons, and solid-state systems [1]. However, recent
experiments have demonstrated that superconducting res-
onators—harmonic oscillators with a theoretically infinite
ladder of states—can also be addressed and manipulated
for quantum state storage and transfer [2]. These resonators
have excellent coherence properties and would provide a
promising alternative approach to large-scale quantum
information processing. Future progress requires a theo-
retical study of how to efficiently generate entanglement in
coupled networks of resonators.

Recent experiments have achieved arbitrary control of a
single superconducting resonator. In particular, Hofheinz
et al. used a superconducting phase qubit to synthesize an
arbitrary state of a single resonator [3]. While previously
Fock states (states of definite photon number n) with n up
to 20 had been generated [4], here superposition states
were created and analyzed using Wigner tomography [3]
for photon states with n � 6. These states were synthe-
sized using an algorithm developed by Law and Eberly [5],
originally designed for atomic cavity-QED systems. An
important theoretical question is whether there exists a
corresponding algorithm for the synthesis of an arbitrary
quantum state of two resonators (a and b), of the general
form

j�i ¼ XNa

na¼0

XNb

nb¼0

cna;nb jnai � jnbi: (1)

Among these states are the maximally entangled N-photon
states

j�i ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
N þ 1

p XN
k¼0

jk; N � ki; (2)

and the so-called NOON states

j�i ¼ 1ffiffiffi
2

p ðjNa; 0i þ j0; NbiÞ: (3)

States with the latter form can be used to beat the standard
quantum limit of measurements of phase (or frequency)
[6], and both represent generalizations of the Bell states of
two qubits or the highly nonclassical N-particle
Greenberger-Horne-Zeilinger state.
In this Letter we present a realistic solution to the state-

synthesis problem for two superconducting resonators. We
consider a tunable superconducting qubit, such as the
phase [7] or transmon [8] qubit, coupled to two resonators
with different frequencies, as shown in Fig. 1. This is
described by the Hamiltonian

H ¼ !qðtÞj1ih1j þ 1
2ð�ðtÞj1ih0j þ��ðtÞj0ih1jÞ þ!aa

ya

þ!bb
ybþ gað�þaþ ��ayÞ þ gbð�þbþ ��byÞ;

(4)

where ay is the creation operator for the resonator of
frequency !a, b

y is the creation operator for a resonator
of frequency !b, �ðtÞ is a possibly complex microwave
field (in the rotating wave approximation), and ga and gb

Resonator A

Resonator B

QubitControl
Line

FIG. 1 (color online). Schematic circuit for generating entan-
glement between two superconducting resonators. Resonator A
(blue) has a fundamental frequency !a=2�, while resonator B
(red) has frequency !b=2�. These are each capacitively coupled
to a tunable qubit (gray) with frequency !q=2�, with coupling

strengths ga and gb. The qubit is controlled by an external circuit
(black). The theoretical results described in the text require
!a <!q < !b.
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are fixed coupling strengths between the qubit and the
resonators. Control of this circuit is exercised by modify-
ing the time dependent qubit frequency !qðtÞ by a ‘‘shift’’

pulse and applying Rabi pulses resonant with the qubit. By
performing a sequence of these pulses, quanta can be
created and transferred between the qubit and the two
resonators.

Note that this resonator-qubit-resonator system comple-
ments the qubit-resonator-qubit systems first studied in the
resonant regime (!q ¼ !a) at NIST [2] and the dispersive

regime (j!q �!aj � ga) at Yale [9] (note also the recent

experiments [10,11]). There have been several theoretical
studies of this type of system [12], all towards the goal of
generating entanglement between mesoscopic resonators.
Here we solve the general problem of synthesizing an
arbitrary entangled state, an important step towards quan-
tum information processing with harmonic oscillator
modes.

A state-synthesis algorithm must program a sequence of
pulses to prepare and transfer Fock states into the desired
superposition state. Previous studies of this problem for
entangled states of motion for a single trapped ion [13]
have shown that the synthesis of a general state with na �
Nmax and nb � Nmax requires a number of elementary steps
of order N2

max, proportional to the number of coefficients in
the expansion of the state vector, and schemes that achieve
this scaling have been identified. However, none of these
schemes can be directly applied to the problem presented
above. These schemes all use sideband transitions and
most use special two-mode interactions [14] specific to

ion traps. While there are sideband interactions for reso-
nators dispersively coupled to a qubit [15], these interac-
tions will be much slower; the transfer of a single photon
has an effective Rabi coupling of �eff � gj�j2=!2

q [16].

For definiteness, consider the Fock-state diagram of
Fig. 2(a). Each node represents the two states of the qubit
with photon numbers (na; nb) or the quantum state
jq; na; nbi (where the qubit state is q ¼ 0 or 1). The reso-
nant interaction of the qubit with each resonator, Ha ¼
gað�þaþ ��ayÞ and Hb ¼ gbð�þbþ ��byÞ, leads to
horizontal and vertical transitions, respectively, illustrated
by the solid and dashed lines. These resonant interactions
are fast, efficient, and provide nearest neighbor transitions
in the Fock-state diagram. The addition and control of
individual photons requires an independent state-selective
qubit rotation. By addressing the qubit in between the
resonant cavity interactions, it is possible to access the
entire state space.
To achieve selective manipulations of the quantum sys-

tem, we use the photon-number-dependent Stark shift [17].
For our system, this implies that a qubit operated in the
dispersive regime will undergo Rabi oscillations from
j0; na; nbi ! j1; na; nbi when the drive frequency satisfies

!d ¼ !q þ g2a
!q �!a

ð2na þ 1Þ þ g2b
!q �!b

ð2nb þ 1Þ:
(5)

We choose to set �! ¼ g2a=ð!q �!aÞ ¼ �g2b=ð!q �
!bÞ. This can always be achieved for a qubit with a tunable

FIG. 2. Schematic set of operations to generate an arbitrary state of two resonators. In this Fock-state diagram, the state jq; na; nbi is
represented by the node at location (na; nb). (a) Interactions lead to couplings between these states, indicated by the arrows. Three key
interactions are used: A transfers quanta between the qubit and resonator a (solid lines), B transfers quanta between the qubit and
resonator b (dashed lines), and R (curved arrows) rotates the qubit for states with na � nb ¼ n (here with n ¼ 0, see text).
(b) Numerical simulations of Stark-shifted Rabi oscillations for !a=ð2�Þ ¼ 6:3 GHz, !b=ð2�Þ ¼ 7:7 GHz, !q=ð2�Þ ¼ 7 GHz,

ga=ð2�Þ ¼ gb=ð2�Þ ¼ 70 MHz. The Rabi oscillations are driven at !d=ð2�Þ ¼ 7:025 GHz and �=ð2�Þ ¼ 7 MHz (with na � nb ¼
2). Each block corresponds to the maximum probability of the transition j0; na; nbi ! j1; na; nbi (see text).
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frequency such as the phase or transmon qubit. This allows
us to simplify our Rabi pulses to frequencies

!n ¼ !q þ n�!; (6)

which selects those states with na � nb ¼ n, where n is an
integer [n ¼ 0 is shown in Fig. 2(a)]. Note that this choice
requires !a < !q <!b and j�j< g2a=ð!q �!bÞ (to

avoid nonresonant transitions). By choosing different
values of !n one can address each of the ‘‘diagonals’’ of
the Fock-state diagram.

Direct simulations of Rabi oscillations using the full
Hamiltonian verify this approach, as shown in Fig. 2(b)
for n ¼ 2. Each block represents the maximum of the
transition probabilities jh1; na; nbj�ðtÞij2, calculated with
the initial condition j�ðt ¼ 0Þi ¼ j0; na; nbi. The transi-
tion probabilities are large along the diagonal, decreasing
significantly for neighboring Fock states. A similar effect
known as ‘‘number splitting’’ was experimentally demon-
strated for a qubit coupled to a single resonator [18] and
recently used in an experiment with a qubit coupled to two
resonators [11].

We now show how these three interactions can be used
to achieve the synthesis of arbitrary joint states of two
resonators. This is accomplished by the following se-
quence of operations:

U ¼
�YNb

j¼1

Ub;j

�
Ua; (7)

with

Ua ¼ YNa

j¼1

AjRa;j and Ub;j ¼
YNa

k¼0

BjkRb;jk: (8)

Here we have defined Aj ¼ expð�iHata;jÞ, Bj ¼
expð�iHbtb;jkÞ, and the single-qubit rotations Ra;j and

Rb;jk. This sequence can be physically realized by shifting

the qubit into and out of resonance with resonators a and b,
interleaved by the Stark-shifted qubit rotations described
above. The parameters (ta;j, tb;jk, Ra;j, and Rb;jk) in this

operation must be chosen to satisfy

j�i ¼ Uj0; 0; 0i ¼ j0i � XNa

na¼1

XNb

nb¼1

cna;nb jna; nbi; (9)

where cna;nb are arbitrary coefficients. To determine the

precise sequence of operations for a given two-resonator
state j�i, one solves for the inverse evolution:

Uyj�i ¼ Uy
a

Y1
j¼Nb

Uy
b;jj�i ¼ j0; 0; 0i: (10)

Each step of this inverse sequence can be mapped onto a
state transfer in the Fock-state diagram. In order to solve
this problem, one must show that photons can be consis-
tently removed from the system. Our approach accom-

plishes this in the following way. The sequence of Uy
b;j

unitaries moves the system along the vertical paths (B) in
the Fock-state diagram. Each step removes a photon from

row nb ¼ j of the Fock-state diagram. This is done by
marching (from right to left) along the columns na ¼ k,
with Bjk transferring the amplitude in row j to row j� 1,

after which the Stark-shifted single-qubit operations Rb;jk

[with frequencies !q þ ðk� jþ 1Þ�!] rotates the ampli-

tude to state j0; k; j� 1i. After all of the photons have been
removed from the columns in row j, the sequence repeats
for row j� 1. Each time through, population is transferred

towards nb ¼ 0. Once there, theUy
a sequence moves popu-

lation along the horizontal paths (A) to na ¼ nb ¼ 0, or
j0; 0; 0i, thus solving Eq. (10). This completes the algo-
rithm [19].
The total number of steps matches the optimal efficiency

of the ion-trap proposals discussed above, but here using
resonant interactions and the Stark-shifted Rabi pulses.
Each step involves the rotation of an effective two-state
system whose amplitudes are known (from the original
cna;nb), as in the original Law-Eberly scheme [5]. By

counting the number of operations in U, we find that the
general sequence requires Na A unitaries, ðNa þ 1ÞNb B
unitaries, and Na þ ðNa þ 1ÞNb Rabi pulses. Thus, the
total time is approximately given by

Tmax¼ðNaþ1ÞðNbþ1Þ�
�
þXNa

j¼1

�

ga
ffiffiffi
j

p þðNaþ1ÞX
Nb

j¼1

�

gb
ffiffiffi
j

p :

(11)

Note, however, that for states such as the NOON state we
can achieve an even greater efficiency. For these states one
need not transfer amplitude over the whole diagram, but
only along certain paths, leading to a sequence with only a
linear number of steps. Consider the sequence of opera-
tions shown in Fig. 3, whose steps are detailed in Table I.
This sequence requires a linear number of operations as
opposed to the quadratic scaling of the general procedure

0

0

n b

3
q =0
q =1

2

1

na1 2 3

B1

B2

B3

A1 A2 A3

Ra,1 Ra,2 Ra,3

Rb,1

Rb,2

Rb,3

FIG. 3. Algorithm to generate the state j�i ¼ j3; 0i þ j0; 3i of
two coupled resonators. The sequence of operations is detailed in
Table I. The horizontal, vertical, and curved transitions are the
interactions A, B, and R (see text).
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described above. In fact, we find that Eq. (11) can be
reduced to

TNOON¼
�
NaþNb�1

2

�
�

�
þXNa

j¼1

�

ga
ffiffiffi
j

p þXNb

j¼1

�

gb
ffiffiffi
j

p : (12)

We now estimate the time required to generate a NOON
state. We consider a qubit with !q=ð2�Þ ¼ 6:5 GHz and

resonators with !a=ð2�Þ ¼ 6 GHz, !b=ð2�Þ ¼ 7 GHz,
and a coupling of ga=ð2�Þ ¼ gb=ð2�Þ ¼ 150 MHz (simi-
lar to recent experiments [20]). For the state-selective Rabi
pulses, numerical simulations (not shown) show that
�=ð2�Þ ¼ 1

4� g
2
a=ð!q �!aÞ ¼ 22 MHz produces an error

of a few percent. Using Eq. (12) we estimate that NOON
state generation with Na ¼ Nb ¼ 8 will take only 370 ns.
Smaller couplings (as in Fig. 2) can still achieve Na ¼
Nb ¼ 3 in 420 ns. These times compare quite favorably to
the coherence times of both qubits and resonators, which
are now consistently greater than 0:5 �s [3,4,20]. Most of
the time is for the high-fidelity state-selective Rabi pulses.
Faster rotations should be possible by using specially
shaped pulses [21]. Recent experiments [22] using such
pulses show that quantum algorithms are ultimately limited
by the coherence times.

Other experimental issues may arise in this procedure.
First, there will be modifications to the rotating wave and
dispersive approximations [used to derive Eq. (5)] for large
couplings and photon numbers. These can be addressed
through pulse shaping or optimal control theory ap-
proaches. Second, we have ignored the dynamical phases
that arise when the qubit is shifted between frequencies.
These phases can be corrected by including brief pauses
between the Rabi and shift pulses [3,20], and will not
significantly affect the overall time needed for state prepa-
ration. A full simulation including these effects, including
decoherence, will be performed elsewhere, but the esti-
mates given above are quite promising. Finally, verifying
the two-resonator state may require additional qubits for
readout using Wigner tomography [3] to probe the coher-
ence of the two resonators. However, efficiently manipu-

lating and measuring entangled resonators appears
experimentally possible.
In summary, we have presented a method to synthesize

an arbitrary quantum state of two superconducting reso-
nators. This method combines state-selective Rabi oscilla-
tions (using Stark shifts) with linear couplings of each
resonator to a tunable artificial atom. We have shown that
this approach can efficiently synthesize NOON states, with
large photon numbers, using existing technology. More
generally, this approach can be applied to many types of
coupled qubit-resonator systems and opens up an impor-
tant path towards quantum information processing with
superconducting oscillators.
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TABLE I. NOON State-synthesis procedure.

Step Parameters Quantum State

Ra;1 �tqa;1 ¼ �=2, !d ¼ !0 j0; 0; 0i � ij1; 0; 0i
A1 gata;1 ¼ � j0; 0; 0i � j0; 1; 0i
Ra;2 �tqa;2 ¼ �, !d ¼ !1 j0; 0; 0i þ ij1; 1; 0i
A2 gata;2 ¼ �=

ffiffiffi
2

p j0; 0; 0i þ j0; 2; 0i
Ra;3 �tqa;3 ¼ �, !d ¼ !2 j0; 0; 0i � ij1; 2; 0i
A3 gata;3 ¼ �=

ffiffiffi
3

p j0; 0; 0i � j0; 3; 0i
Rb;1 �tqb;1 ¼ �, !d ¼ !0 �ij1; 0; 0i � j0; 3; 0i
B1 gbtb;1 ¼ � �j0; 0; 1i � j0; 3; 0i
Rb;2 �tqb;2 ¼ �, !d ¼ !�1 ij1; 0; 1i � j0; 3; 0i
B2 gbtb;2 ¼ �=

ffiffiffi
2

p j0; 0; 2i � j0; 3; 0i
Rb;3 �tqb;3 ¼ �, !d ¼ !�2 �ij1; 0; 2i � j0; 3; 0i
B3 gbtb;3 ¼ �=

ffiffiffi
3

p �j0; 0; 3i � j0; 3; 0i
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