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We address the problem of quantifying the non-Markovian character of quantum time evolutions of

general systems in contact with an environment. We introduce two different measures of non-

Markovianity that exploit the specific traits of quantum correlations and are suitable for opposite

experimental contexts. When complete tomographic knowledge about the evolution is available, our

measure provides a necessary and sufficient condition to quantify strictly the non-Markovianity. In the

opposite case, when no information whatsoever is available, we propose a sufficient condition for non-

Markovianity. Remarkably, no optimization procedure underlies our derivation, which greatly enhances

the practical relevance of the proposed criteria.
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The actual dynamics of any real open quantum system is
expected to deviate to some extent from the idealized
Markovian evolution that arises from the conditions of
weak (or singular) coupling to a memoryless reservoir
[1,2]. While quantum optics provides realizations that are
extremely well approximated by such an evolution, soft or
condensed matter systems evolve subject to conditions that
are generally unsuited to be treated within the Born-
Markov framework [3]. This is particularly the case
when considering interacting many-body systems, where
the subsystem’s coupling strength may be comparable to
the coupling to the bath [4]. The exact details of what
makes a given quantum evolution non-Markovian may be
complicated, and in many cases, especially when thinking
about many-body systems, an accurate microscopic model
of the system-bath interaction may actually be unfeasible.
It would therefore be very useful to define some simple
measure that captures, in some form, the fact that the
evolution departs from strict Markovianity. This problem
was addressed by [5] in the context of abstract quantum
channels and, very recently, an optimization-based mea-
sure of non-Markovianity founded upon the behavior of the
trace distance under complete positive (CP) trace-
preserving maps have been proposed in [6].

Formally, the dynamics of a quantum system given by a
family of trace-preserving maps E� is called Markovian if
it defines a one-parameter semigroup of CP maps, so that
E�1E�2 ¼ E�1þ�2 . With this definition, Markovian quantum

processes are analogous to their classical counterparts (see,
for example, [2,7]), the classical requirement of positivity
being now replaced by complete positivity as a result of the
possible presence of genuine quantum correlations (entan-
glement) with some extra system. The structure of this kind
of semigroups was analyzed in detail some time ago [8],
concluding that a quantum system will undergo a
Markovian dynamics provided that its evolution satisfies
a Master equation of the standard (Lindblad) form:
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Here H is a self-adjoint operator, �k � 0, 8k, and L is

called the generator of the semigroup (E� ¼ eL�). In anal-
ogy to the case of time dependent Hamiltonians in closed
systems, the generators can be also time dependent Lt;
then it is possible to prove that if and only if Lt can be
written in the standard form (1), with HðtÞ, �kðtÞ � 0 and
VkðtÞ potentially time dependent, the family of propagators

Eðt2;t1Þ ¼ T expðRt2
t1 L�d�Þ satisfying the composition law

E ðt2;t0Þ ¼ Eðt2;t1ÞEðt1;t0Þ; (2)

for all t2 � t1 � t0 � 0 are CP maps. This situation is
sometimes referred to as time-inhomogeneous Markovian
dynamics. Note that the condition (2) is the quantum
counterpart to the classic Chapman-Kolgomorov equation.
Conceptually, one could think of introducing a
Markovianity measure via some type of optimization prob-
lem, such as evaluating a quantity of the form

max
�>0

min
EM

kEðt0þ�;t0Þ � EM
ðt0þ�;t0Þk;

where k � k denotes some appropriate operator norm. The
minimum is taken over the set of Markovian maps EM, and
the maximum over final times deals with the time continu-
ous dependence of the dynamical maps (note that Eðt0;t0Þ ¼
1 independently of E, and 1 is trivially Markovian).
However, this quantity is hard to compute in practice due
to the nonconvex structure of the set of Markovian maps
EM [5].
In this Letter, we adopt a novel strategy and propose two

possible ways to quantify the non-Markovian character of a
quantum evolution which avoid the definition of an opti-
mization problem. Our key element will be exploiting the
specific behavior of quantum correlations when a part of a
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composite system is subject to a local interaction that can
be modeled as a trace-preserving CP map. This will allow
us to give a necessary condition to measure deviations from
Markovianity even when the actual form of the dynamics is
completely unknown, although some non-Markovian evo-
lutions may be undetected. A necessary and sufficient
condition can be provided in the case when the dynamics
is amenable to complete characterization, for instance, via
quantum process tomography. Then, we are able to quan-
tify strictly the Markovian character of the evolution and
deviations from strict Markovianity can be unambiguously
characterized.

Let us consider first the case where we do not have any
information about the dynamics of our system of interest,
which we will consider initially to be a general, possibly
composite d-dimensional quantum system. Our aim is to

introduce a measure, that we denote by I ðEÞ, that quantifies
the deviation from Markovianity in the evolution of the
system. For that, we will initially prepare a maximally
entangled state with an ancillary system which has to
remain isolated from the decoherence sources, as illus-
trated in Fig. 1. Since local trace-preserving CP maps do
not increase the amount of entanglement [9], it is evident
from the composition law (2) that the decay of the entan-
glement with an ancillary system will be monotonically
decreasing for Markovian evolutions. This fact also pre-
vents the formation of loops in diagrams concurence vs
purity as illustrated in [10]. However, if the evolution is
non-Markovian, the requirement of strict monotonicity
does no longer hold [11], as environmental correlations

can lead to bipartite entanglement to be increased and
decreased as a function of time (as exemplified by the
red curve in Fig. 1). Hence a conceptually simple way to
quantify the degree of non-Markovianity of an unknown
quantum evolution would be to compute the amount of
entanglement between system and ancilla at different times
within a selected interval ½t0; tmax� and check for strict
monotonic decrease of the quantum correlations. That is,
for �E ¼ E½�SAðt0Þ� � E½�SAðtmaxÞ� (where E denotes
some entanglement measure) and some initial maximally
entangled system-ancilla state, j�i ¼ 1ffiffi

d
p P

d�1
n¼0 jnijni,

�SEð0Þ ¼ j�ih�j, we have

I ðEÞ ¼
Z tmax

t0

��������
dE½�SAðtÞ�

dt

��������dt� �E;

in such a way that if the evolution of the system is
Markovian the derivative of E½�SAðtÞ� is always negative
and I ðEÞ ¼ 0.
Note that since the knowledge of the exact form of the

dynamics is not necessary to measure I ðEÞ, this method can
be particularly useful in the study of infinite dimensional
systems, where the computation of the exact dynamical
map is often difficult. For the sake of illustration, let us
consider a single damped harmonic oscillator, with total
system-bath Hamiltonian given by

H ¼ !ayaþ XM
j¼1

!ja
y
j aj þ

XM
j¼1

gjðayaj þ aayj Þ;

where M is the number of oscillators in the bath, and we
have assumed the validity of the rotating wave approxima-
tion (RWA). The bath is assumed to be initially in a thermal

state �B ¼ expð�HB=TÞ=tr½expð�HB=TÞ�, HB ¼P
M
j¼1 !ja

y
j aj, and the system oscillator will be initially

entangled with another oscillator, the ancilla, in a two-

mode vacuum squeezed state j�i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p
�P1

n¼0 �
njnijni, where � ¼ tanhr and r is the so-called

squeezing parameter. Recall that this state is the most
entangled Gaussian state at fixed mean energy �n ¼
sinh2r, and for infinite squeezing r ! 1 it approaches to
the maximally entangled state. So it seems appropriate to
apply our method, although the shape of the curves does
not depend significatively on r. Since the Hamiltonian is
quadratic in the annihilation and creation operators, it
preserves the Gaussian character of the states and the
amount of entanglement between system and ancilla can
be computed easily by means of the logarithmic negativity

ENð�ABÞ ¼ log2k�TA

ABk1, where TA denotes the partial

transposition with respect to the subsystem A and k � k1
the trace norm [12]. To visualize the sensitivity of the

proposed measure I ðEÞ, two different spectral densities of
the bath have been considered, as well as several initial

temperatures. In Fig. 2, the behavior of I ðEÞ has been
plotted for an Ohmic spectral density with exponential

cutoff Jð!Þ ¼ P
M
j¼1 g

2
j�ð!�!jÞ ! �!e�!=!c , where

FIG. 1 (color online). Schematic illustration of the envisaged
scenario to measure the nonmarkovian character of an unspeci-
fied dynamical map. An arbitrary quantum system, possibly
multilevel and with an internal dynamics, is subject to the action
of a local bath, depicted as a golden glow. The system is initially
prepared in a maximally entangled state j�i with an ancilla
which is kept shielded from the bath. The green line represents
some typical decay of the initial entanglement for a Markovian
evolution while the red line corresponds to a possible non-
Markovian decay. In this case, the local action of the bath is
no longer represented by a continuous family of CP propagators
(2) and the entanglement between system and ancilla is no
longer constrained to decrease monotonically. It is this deviation
I ðEÞ that allows us to estimate the non-Markovianity of the
process despite ignoring any details about the evolution itself.
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!c is the so-called cutoff frequency. In order to make the
analysis simpler, we focus only on the dynamical behavior
under different strengths of the coupling between system
and bath. In the simulation, of course, the discrete and
finite number of oscillators in the bath will affect the
results, but in order to avoid this effect we have taken a
number of oscillators distributed in a range of frequencies
(see details on the plots) such that our final time tmax is
shorter than the recurrence time of the bath but large
enough to capture the general properties of the dynamics.
It is clear from Fig. 2 that in the limit � ! 0we approach a
Markovian evolution independently of the value of T. This
is the well-known weak-coupling limit, whereas the onset
of deviations from Markovianity for stronger coupling
strengths are T dependent, so that the value of � for which

the measure I ðEÞ becomes nonzero increases with increas-

ing temperature, the same happens with the value of I ðEÞ
itself for� large enough. An analogous situation is encoun-
tered in the presence of a super-Ohmic spectral density

Jð!Þ ¼ �!3e�!=!c , as shown in Fig. 3; however, the
specific value of I ðEÞ for given T and � depends strongly
on the bath spectral function.

There can be, however, non-Markovian quantum evolu-
tions that remain undetected by the proposed measure,

given that the requirement I ðEÞ > 0 is a sufficient condition
for deviation from Markovianity. A necessary and suffi-
cient condition can nevertheless be formulated if the spe-
cific form of the quantum evolution, as given by some
dynamical map Eðt;t0Þ, is amenable to exact reconstruction

between the some initial time t0 and a final time t. This can
in principle be done by means of process tomography or
perhaps resorting to a theoretical microscopic model. Let
us take our initial time as t0 ¼ 0 without loss of generality.
Then, because of the continuity of time, we can split the
dynamical map as

E ðtþ�;0Þ ¼ Eðtþ�;tÞEðt;0Þ (3)

for any instance of t and �. If the time evolution imple-
mented by Eðt;0Þ is Markovian, we have already mentioned

that Eðt2;t1Þ is CP for any intermediate times ðtþ �Þ � t2 �
t1 � 0 (that is, Eðt;0Þ is infinitesimally divisible in the sense

of [5] for any t). However if and only if there exist times t
and � such that Eðtþ�;tÞ is not CP, the dynamics will be non-

Markovian. Note that this is the ultimate reason behind the
possible increase of the system-ancilla entanglement at
some local times, which is the basis of our previous mea-
sure. This partition can be extracted from the known dy-
namical map Eðt;0Þ as a function of t just by applying E�1

ðt;0Þ
(which may not be a CP map) to the Eq. (3). Since
Eðt!0;0Þ ! 1, for t small enough Eðt;0Þ will be invertible, if
for larger times Eðt;0Þ is not invertible, we do not have

enough information to define Eðtþ�;tÞ in an unequivocal

way (this is one consequence of being blind to one part
of the whole system). Then there are several routes to
follow depending on the nature of the singularities of
Eðt;0Þ; for example, strategies based on pseudoinverse

maps have been recently applied in a similar context [13].
Being j�i a maximally entangled state of our open

system and some ancillary one, because of the Choi-
Jamiołkowski isomorphism [14] Eðtþ�;tÞ is CP if and only

if ðEðtþ�;tÞ � 1Þj�ih�j � 0. Hence, given the trace-

preserving property, we can take the following definition
as a measure of the non-CP character of Eðtþ�;tÞ,

fNCPðtþ �; tÞ ¼ kðEðtþ�;tÞ � 1Þðj�ih�jÞk1:
Therefore, Eðtþ�;tÞ is CP if and only if fNCPðtþ �; tÞ ¼ 1,
otherwise fNCPðtþ �; tÞ> 1. Now fNCPðtþ �; tÞ will be
the building block of our measure of non-Markovianity. To
construct it we leave � to be infinitesimal to define the
(right) derivative of fNCPðtþ �; tÞ:

gðtÞ ¼ lim
�!0þ

fNCPðtþ �; tÞ � 1

�
;

FIG. 2 (color online). Results of the simulation for the non-
Markovianity as a function of the strength of the coupling �
between a damped harmonic oscillator and a bath with Ohmic
spectral density Jð!Þ ¼ �!e�!=!c , for different temperatures.

FIG. 3 (color online). The analogous to Fig. 2 for the case of a
super-Ohmic spectral density Jð!Þ ¼ �!3e�!=!c , note the dif-
ferent values of cut-off frequencies and the order of magnitude
of �.
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noticing that gðtÞ � 0, with gðtÞ ¼ 0 if and only if Eðtþ�;tÞ is
CP. Therefore the integral

I ¼
Z 1

0
gðtÞdt

can be taken as a measure of non-Markovianity, and as
long as gðtÞ decreases fast enough (this will not be always
the case) will be finite. Actually a normalized version of

this measure can be DNM ¼ I
Iþ1 , in such a way that

DNM ¼ 0 for I ¼ 0 (i.e. Markovian evolution) and
DNM ! 1 for I ! 1.

To illustrate the behavior of I , let us consider the dy-
namics of one qubit modeled by a possibly non-Markovian

differential master equation d�
dt ¼ Ltð�Þ [2], since in the

limit � ! 0 the solution of this equation formally tends to

Eðtþ�;tÞ ! eLt� [15], we only need to expand it inside of

trace norm up to first order to calculate gðtÞ,

gðtÞ ¼ lim
�!0þ

k½1þ ðLt � 1Þ��j�ih�jk1 � 1

�
:

For instance, for a very simplified evolution of a qubit such

as pure dephasing written like d�
dt ¼ �ðtÞð�z��z � �Þ we

immediately obtain

gðtÞ ¼
�
0 for �ðtÞ � 0
�2�ðtÞ for �ðtÞ< 0

and finally

I ¼ �2
Z
�ðtÞ<0

�ðtÞdt: (4)

Therefore, for this kind of evolution, I is proportional to
the area of �ðtÞ which is below zero. In particular, if the
negative values of �ðtÞ do not tend to zero fast enough I !
1 [This is actually the case in the second example of [6]
where �ðtÞ � tanðtÞ] [16].

In summary, we have proposed two different approaches
for the problem of quantifying non-Markovianity of gen-
eral quantum evolutions; one is based on a sufficient
condition whose evaluation does not require any prior
knowledge of the quantum evolution itself, and the other
provides a measure which quantify strictly the non-
Markovianity, provided that the structural form of the
dynamical map is known. Remarkably, the evaluation of
the proposed measures does not require solving an opti-
mization problem and would be suitable for providing
information on the deviations from Markovianity in the
experimental implementation of effective spin models us-
ing controllable systems, as for instance, trapped ions [17].
This type of experiments can prove extremely valuable in
the subsequent formulation of detailed models of system-
environment coupling in complex systems, both in con-
densed matter and, potentially, in some biological aggre-

gates. These compounds have recently become experi-
mentally probable at the femtosecond scale [18] but, given
their complexity, no detailed microscopic models for the
interaction with their surroundings are currently available.
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