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We show a practical application of the Jarzynski equality in quantum computation. Its implementation

may open a way to solve combinatorial optimization problems, minimization of a real single-valued

function, cost function, with many arguments. We consider to incorporate the Jarzynski equality into

quantum annealing, which is one of the generic algorithms to solve the combinatorial optimization

problem. The ordinary quantum annealing suffers from nonadiabatic transitions whose rate is charac-

terized by the minimum energy gap �min of the quantum system under consideration. The quantum sweep

speed is therefore restricted to be extremely slow for the achievement to obtain a solution without relevant

errors. However, in our strategy shown in the present study, we find that such a difficulty would not matter.
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Quantum computer is believed to be able to solve in-
tractable problems on classical computer by use of super-
position, tunneling effect, and entanglement attributed to
quantum nature. This fascinating device is attracted to
researchers and studied from both aspects of the funda-
mental interests of quantum nature and its application. The
intractable problems we wish to solve are often closely
related to efficiency for cost and time in industry and
distribution systems to gain convenience in our daily life.
The efforts in both of the theoretical and experimental
approaches have culminated to realize quantum computer,
which can mitigate the difficulties to solve such hard
problems. Hundreds of hard problems are found in the
optimization problem, which is the kind of problem that
minimizes or maximizes a real single-valued function of
multivariables called the cost function. The cases in which
variables take discrete values are known as combinatorial
optimization, whose well-known instances are satisfiability
problems, exact cover, maximum cut, Hamilton graph, and
traveling salesman problem [1,2]. Most of the interesting
optimization problems belong to the hard class in which
the best known algorithms cost an exponentially long time
as a function of the system size (the number of degrees of
freedom representing the cost function). Therefore one
desires quantum computation, which enables us to solve
such hard optimization problems by an algorithm employ-
ing quantum nature. One of the generic algorithms pro-
posed as part of such efforts is quantum annealing (QA)
[3–5]. In QA, we introduce artificial degrees of freedom of
quantum nature, noncommutative operators, which induce
quantum fluctuations to drive the system as

HðtÞ ¼ fðtÞH0 þ f1� fðtÞgH1; (1)

where H0 is the classical Hamiltonian consisting of diago-
nal elements, which express the cost function. Here fðtÞ is
assumed to be a monotonically increasing function satisfy-
ing fð0Þ ¼ 0 and fð�Þ ¼ 1. The quantum annealing starts

from a single pure state, the ground state of H1, which is

chosen to be trivially given as j�ð0Þi ¼ P
f�gj�i=

ffiffiffiffi
N

p
,

where N characterizes the system size of the optimization
problem. The adiabatic theorem guarantees that we can
reach a nontrivial ground state of H0 after quantum dy-
namics with a sufficiently slow speed as 1=�c ��2

min:,

where � means the annealing time, and � is the energy
gap of the instantaneous quantum system as in Eq. (1)
[5,6]. However, QA does not work well in a reasonable
time, since we require extremely slow control, for the cases
in which the quantum system as in Eq. (1) has a minimum
energy gap vanishing as �min � expð��NÞ for increasing
the system size N [7,8]. The quantum annealing is a very
generic technique but has such a bottleneck.
To overcome the above difficulty, we bring another

theoretical piece from nonequilibrium statistical physics,
the Jarzynski equality (JE), in the present study [9,10]. The
Jarzynski equality is written by a well-known expression as

he��Wi ¼ Z�ð�Þ
Z0ð�Þ ; (2)

where the angular brackets denote the average over all
realizations in a predetermined process starting from an
initial equilibrium state andW is the work done during the
process. The partition functions for the initial and final
Hamiltonians are written as Z0ð�Þ and Z�ð�Þ with inverse
temperature�, respectively. We here recall the formulation
of JE for classical systems on a heat bath [10]. Let us
consider a thermal nonequilibrium process in a finite-
time schedule 0 � t � �. Thermal fluctuations can be
simulated by the master equation. We employ discrete
time expressions and write tkþ1 � tk ¼ �t, t0 ¼ 0 and
tn ¼ �. The probability that the system is in a state �k at
time tk is denoted as Pð�k; tkÞ. The transition probability
per unit time �t is defined as Mð�kþ1j�k; tkÞ. In the origi-
nal formulation of JE, the work is defined as the energy
difference merely attributed to the change of the
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Hamiltonian, but we can construct JE also in the case of
changing the inverse temperature by defining the work as
��Wð�k; tkÞ ¼ �½�ðtkþ1Þ � �ðtkÞ�Eð�kÞ, where Eð�Þ is
the value of the cost function (classical Hamiltonian H0)
for the specific state �. The left-hand side of JE can be
expressed as

he��Wi ¼ X
f�kg

Yn�1

k¼0

fe��Wð�kþ1;tkÞe�tMð�kþ1j�k;tkÞg ~Pð�0; t0Þ;

(3)

where ~Pð�0; t0Þ denotes the initial equilibrium distribution.
The initial condition is set to the equilibrium distribution.
If the transition term exp½�tMð�kþ1j�k; tkÞ� is removed in
Eq. (3), JE is trivially satisfied because the summation of
��Wð�kþ1; tkÞ over k yields �½�ðtnÞ � �ðt0Þ�Eð�0Þ. A
nontrivial aspect of JE is in the insertion of the transition
term, which does not alter the conclusion. From Eq. (3), it
is straightforward to prove JE. This is the case for classical
systems on a heat bath, not for quantum systems. One may
think the above classical equality is not available for the
application to QA. Nevertheless, we can apply the classi-
cal JE to QA with the aid of the classical-quantum map-
ping [11].

The classical-quantum mapping leads us to a special
quantum system, in which the (instantaneous) equilibrium
state of the above stochastic dynamics can be expressed as
a ground state. A general form of such a special quantum
Hamiltonian is

Hqð�0j�; tÞ ¼ ��0;� � e�ðtÞH0ð�0Þ=2Mð�0j�; tÞe��ðtÞH0ð�Þ=2:
(4)

This Hamiltonian has the ground state as j�eqðtÞi ¼P
�e

�½�ðtÞ=2�H0ð�Þj�i= ffiffiffiffiffiffiffiffiffi
ZðtÞp

. It is clear that the quantum
expectation value of a physical quantity Að�Þ by j�eqðtÞi
is equal to the thermal expectation value for the same
quantity. The ground state energy is 0, which can be
explicitly shown by the detailed-balance condition. On
the other hand, the excited states have positive-definite
eigenvalues, which can be confirmed by the Perron-
Frobenius theorem.

In the above special quantum system, we can treat a
quasiequilibrium stochastic process as an adiabatic
quantum-mechanical dynamics in QA. Let us consider
QA for the above special quantum system by setting the
parameter corresponding to the temperature T ! 1 (� !
0). This condition gives the trivial ground state with uni-
form linear combination, similarly to the ordinary QA. If
we tune T ! 0 very slowly, one can obtain the ground state
for Hq, which expresses the very low-temperature equilib-

rium state for H0, the cost function of the optimization
problem that we wish solve. Notice that we use a single
quantum state during the above procedure, not an ensemble
assumed in the ordinary formulation in JE.

Let us construct a protocol with the same spirit as JE by
using the special quantum system. Initially we prepare the
trivial ground state with the uniform linear combination as
in the ordinary QA. From the point of view of the classical-
quantum mapping, this initial state expresses the high-

temperature equilibrium state j�eqðt0Þi / e��ðt0ÞH0ð�Þ=2j�i
with �ðt0Þ � 1. We introduce the exponentiated work
operator Wð�k; tkÞ ¼ expf�½�ðtkþ1Þ � �ðtkÞ�H0ð�kÞ=2g.
It looks like a nonunitary operator, but we can construct
this operation by considering an extended quantum system
as discussed later. If we apply Wð�k; tkÞ to the quantum
wave function j�eqðtkÞi, the state is changed into a state

corresponding to the equilibrium distribution with the
inverse temperature �ðtkþ1Þ. When the time-evolution op-
erator Uð�0j�; tkþ1Þ ¼ exp½�i�tHqð�0j�; tkþ1Þ=@� is ap-

plied, this state does not change, since it is the ground state
ofHqð�0j�; tkþ1Þ. The obtained state after the repetition of
the above procedure is

j�ðtnÞi /
Yn�1

k¼0

fWð�kþ1; tkÞUkþ1ð�kþ1j�k; tkÞgj�eqðt0Þi:

(5)

This is essentially of the same form as Eq. (3). Instead of
the exponentiated matrix of �tMð�kþ1j�k; tkÞ, we use the
time-evolution operator Uð�kþ1j�k; tkÞ here. After the
system reaches the state j�ðtnÞi, we measure the obtained
state by the projection onto a specified state �0. The
probability is then given by jh�0j�ðtnÞij2, which means
that the ground state we wish to find is obtained with the
probability proportional to exp½��ðtnÞH0�, since
j�ðtnÞi / j�eqðtnÞi. If we carry out the above procedure

up to �ðtnÞ � 1, we can efficiently obtain the ground state
of H0. This is called the quantum Jarzynski annealing
(QJA) in the present Letter.
It may seem to be unnecessary to apply the time-

evolution operator Uð�kþ1j�k; tkÞ, which expresses the
change between states by quantum fluctuations, at the
middle step between the operations of the exponentiated
work operators Wð�kþ1; tkÞ. The time-evolution operator
does not mean an artificial control but describes the change
by quantum nature during quantum computation. Let us
remember the nontrivial point of JE. Even if we allow
transitions between the exponentiated work, JE holds as
in Eq. (3).
We emphasize the following three points. First, the

scheme of QJA does not rely on the quantum adiabatic
control. The computational time does not depend on the
energy gap. Therefore QJA does not suffer from the
energy-gap closure differently from the ordinary QA. It
is thus important to estimate the required computational
cost from the number of the unitary gates for the imple-
mentation of QJA as will be discussed below. Second, from
a point of JE, the result is independent of the schedule to
tune the parameter, �, in the above manipulations. Third,
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we do not need the repetition of the predetermined process
to deal with all fluctuations in the nonequilibrium-process
average as in the ordinary JE, since the classical ensemble
is mapped to the quantum wave function. We operate the
above procedure to a single quantum system in principal.
Notice that, since we need a kind of practical techniques to
realize QJA, several-time repetitions of experiments
should be demanded since the result by quantum measure-
ment should be probabilistic. However, we should empha-
size that this point is not related with the theoretical
property of JE attributed to rare events, necessity of all
the realizations during the nonequilibrium process, but it
comes from quantum nature.

According to the property of JE, we can expect that QJA
finds the ground state following the Gibbs-Boltzmann
factor independently of annealing schedules. In contrast,
without the multiplication of the exponentiated work, slow
quantum control is necessary to efficiently find the ground
state according to the ordinary QA. Let us take a simple
instance to search the minimum from a one-dimensional
random potential, which is formulated as the Hamiltonian
H0 ¼ �P

N
i¼1 Vijiihij. Here Vi denotes the potential energy

at site i and chosen randomly. By the linear schedule for
tuning the parameter � from 0 to 100, we apply QA
without exponentiated work operations and QJA to the
above system. Figure 1 shows the comparison between
the probability for finding the ground state with N ¼ 50
sites by QA and QJA with different schedules � ¼ 1, 10
and 100. The plots for QJA (upper curves) are fixed along
the reference curves (dashed curves) representing the in-
stantaneous Gibbs-Boltzmann factor. In other words, QJA
does not depend on �, which characterizes the schedule of
quantum computation. In contrast, QA (lower curves)
needs sufficiently slow decrease of quantum fluctuations
to efficiently find the ground state.

To perform QJA, we need to implement the exponenti-
ated work operation Wð�k; tkÞ ¼ expf�½�ðtkþ1Þ �
�ðtkÞ�H0ð�kÞ=2g, which looks like a nonunitary operator.
To implement this operation, we consider a quantum state
with an ancilla qubit (another two-level quantum system)
as j�; �1i ¼ j�i � j�1i, where �1 is assumed to take 0
and 1 [12]. Initially we set j�; �1 ¼ 0i, which is called the
computational state below. It is convenient to assume the
case that H0ð�Þ> 0 for any states. Let us define the
following ‘‘unitary’’ operator for the enlarged quantum
system as

Wunit:¼
X
�

j�ih�j�
ffiffiffiffiffiffiffiffiffiffi
yð�Þp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�yð�Þp
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�yð�Þp ffiffiffiffiffiffiffiffiffiffi
yð�Þp

 !
� I��Y1;

(6)

where yð�Þ ¼ exp½���H0ð�Þ�. We can obtain the
weighted quantum system by applying this operator to

the computational state as
ffiffiffiffiffiffiffiffiffiffi
yð�Þp j�; �1 ¼ 0i. In that

sense, we can regard Wunit: as the exponentiated work
operation Wð�k; tkÞ for the quantum state j�; �1 ¼ 0i as

above shown for the case in which we increase � mono-
tonically. We can explicitly evaluate each probability am-
plitude of Wunit:j�; �1 ¼ 0i as

h�; 0jWunit:j�; 0i ¼
ffiffiffiffiffiffiffiffiffiffi
yð�Þ

q
; (7)

h�; 1jWunit:j�; 0i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� yð�Þ

q
: (8)

When we consider measurements of the quantum state,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� yð�Þp j�; �1 ¼ 1i is regarded as an undesired error

state in our computation. We have to bound the error
probability perror ¼ 1� yð�Þ. To decrease the error proba-
bility and to avoid negative numbers in the square root, we
here demand perror � ��max�Hð�Þ � 1.
In QJA, to gain the relevant weight for the ground state

of H0, we have to increase a parameter corresponding to
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FIG. 1 (color online). Quantum Jarzynski annealing and quan-
tum annealing for the one-dimensional random-potential prob-
lem. The probabilities for obtaining the ground state by both of
the methods are plotted for � ¼ 1, 10, and 100 from top to
bottom. The dashed curves denote the instantaneous Gibbs-
Boltzmann factor for reference. The upper solid curves repre-
senting the results by QJA are fixed to these reference curves,
while the lower ones express the time-dependent results by the
ordinary QA.
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the inverse temperature up to �ðtnÞ�� 1, where � is the
minimum energy gap of the ‘‘classical’’ Hamiltonian H0

(usually given by the energy unit). Therefore the step of
QJA, which corresponds to the step number of the work
operation Wunit:, is necessary up to n � �ðtnÞ=���
1=���. As a result, the computational time (the step
number of the exponentiated work operation) should be-
come longer as n� 1=��� ¼ max�H0ð�Þ=�perror to make
the error probability perror lower in our strategy. However,
the computational time for QJA does not depend on the
detailed structure of the cost function.

Since �� is bound, we have to prepare an enlarged
quantum state with n ancilla qubits as j�; �1; . . . ; �ni
to obtain the quantum state with the relevant weight
after n-step exponentiated work operation as detailed be-
low. The computational state of QJA in this case is
j�; 0; . . . ; 0i. The other states as j�; 1; 0; . . . ; 0i,
j�; 0; 1; . . . ; 0i, etc., such that several ancilla qubits are
flipped as �i ¼ 1 are regarded as the error states similarly
to the above simple case. To gain the weight up to
exp½��ðtnÞH0�, we consider the n-step exponentiated
work operations as I� � Y1 � I2 � 	 	 	 � In, I� � I1 � Y2 �
I3 � 	 	 	 � In, 	 	 	 and I� � I1 � 	 	 	 � In�1 � Yn, where Ij
denotes the identity matrix. We then obtain the desired
state j�; 0; 0; . . . ; 0i after measurements with the weight as
exp½��ðtnÞH0� ¼ ð1� perrorÞn. The weights for the other
states, the error states, are given as perrorð1� perrorÞn�1 for
j�; 1; 0; . . . ; 0i and p2

errorð1� perrorÞn�2 for
j�; 1; 1; 0; . . . ; 0i and so on. Therefore we can obtain the
desired state by repetition of the experiments when we
consider the realistic implementation of QJA in quantum
computation. The demanded number of the repetition of
the same experiments is evaluated as 1=ð1� perrorÞn � 1þ
max�H0ð�Þ=�, which does not depend on the choice of
perror.

We here summarize the results of the above estimations.
We tune the value of perror � 1 (for instance, perror ¼
0:01) in order to efficiently yield the desired quantum state
as exp½��ðtnÞH0�j�; 0; . . . ; 0i. Simultaneously the com-
putational time for QJA is determined as n�
max�H0ð�Þ=�perror (in the case perror ¼ 0:01, n�
100max�H0ð�Þ=�). Also the number of the repetition of
the same experiments can be estimated as �1þ
max�H0ð�Þ=�. Even if the maximum value of the cost
function becomes larger by increase of the system size as
max�Hð�Þ=� ¼ Nr where r is an arbitrary positive value,
both of the computational time and the number of the
ancilla qubits do not diverge exponentially, since n�
Nr=perror. The repetition of the experiments can also be
reduced to a moderate value as �1þ Nr.

We consider an application of JE to quantum computa-
tion as QA to solve the optimization problems by using the
classical-quantum mapping. The classical-quantum map-
ping enables us to imitate pseudothermal processes in

quantum computation. As we expected, this protocol keeps
the quantum system to express the equilibrium state for the
instantaneous inverse temperature. To decrease some er-
rors occurring after the exponentiated work operation and
measurements, we cannot increase rapidly the inverse
temperature to obtain the ground state and we need addi-
tional qubits. Nevertheless, the cost for the realization of
QJA in quantum computation does not diverge exponen-
tially, which is the essentially different point from the
ordinary QA and other quantum algorithms. The key point
of QJA is that we need another resource like a ‘‘memory’’
in quantum computation instead of cut ‘‘time.’’
Fortunately, the amount of necessary memory (ancilla
qubits) as well as the computational time for implementa-
tion of QJA does not diverge exponentially by the increase
of the system size N. Thus the results by QJA shown here
imply that we may overcome the difficulties in hard opti-
mization problems and solve them in a reasonable time.
The present results are preliminary but we should clarify
the efficiency for several interesting hard problems we
wish to solve in the future study [13]. We hope that QJA
becomes one of the basic algorithms using the quantum
nature.
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