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Many eukaryotic cells are able to detect chemical gradients by directly measuring spatial concentration

differences. The precision of such gradient sensing is limited by fluctuations in the binding of diffusing

particles to specific receptors on the cell surface. Here, we explore the physical limits of the spatial

sensing mechanism by modeling the chemotactic cell as an Ising spin chain subject to a spatially varying

field. Our results demonstrate that the accuracy to sense the gradient direction not only increases

dramatically with the cell size but also can be improved significantly by introducing receptor coopera-

tivity. Thus, receptor coupling may open the possibility for small bacteria to perform spatial measure-

ments of gradients, as supported by a recent experimental finding.
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Cells often direct their motion under the guidance of
chemical gradients. This is essential for critical biological
functions including neuronal development, wound repair,
and cancer spreading [1]. To detect gradients, small organ-
isms like bacterial cells usually employ a temporal sensing
strategy by measuring and comparing concentration sig-
nals over time along their swimming tracks [2]. In contrast,
eukaryotic cells are sufficiently large to implement a spa-
tial sensing mechanism, as they can measure the concen-
tration differences across their cell bodies. Measurements
for both strategies are accomplished by specific cell-
surface receptors which diffusing chemical particles (li-
gands) can bind to. Spatial sensing among eukaryotes
exhibits a remarkable sensitivity to gradients of merely
1%–2% across the cell [3–5]. Given the dynamic fluctua-
tions in ligand-receptor interaction, the receptor signal is
inherently noisy, as demonstrated by single-cell imaging
experiments [6]. This naturally raises a question concern-
ing the reliability of spatial gradient sensing.

In analyzing bacterial chemotaxis, Berg and Purcell
showed that the minimal uncertainty of concentration sens-
ing is set by the diffusion of ligand particles [7]. This work
has been extended to include ligand-receptor binding ef-
fects and possible receptor cooperativity [8–13]. Instead of
measuring the mean concentration, the spatial sensing
program concerns the acquisition of information regarding
the asymmetry in space (the gradient steepness and direc-
tion). Still, the accuracy of gradient measurements must be
limited by physical laws governing ligand diffusion and
stochastic receptor-ligand dynamics. Previous studies on
gradient sensing limits are either based on idealized
mechanisms in absence of kinetics [11], or restricted to
one-dimensional simplifications in which sensing is a dis-
crete choice [13], or rely on heuristic signal transduction
models [14]. Thus, the precise attainable accuracy remains
unknown for directional sensing. In this Letter, we address
this problem more generally using a statistical mechanical
approach, where we view the surface receptors as a (pos-

sibly coupled) spin chain and treat the chemical gradient as
a perturbation field. By calculating the system’s partition
function, we are able to derive the gradient sensing limits
both for independent receptors and for receptors exhibiting
cooperativity. Our results indicate that the spatial sensing
strategy may not be exclusive to large eukaryotic cells, but
also be applicable to some small bacteria [15], especially
with the aid of receptor cooperativity.
We consider a circular cell with diameter L immersed in

a chemoattractant gradient (Fig. 1) and suppose that there
are N receptors distributed at equally spaced intervals on
the cell perimeter [16]. The angular coordinates of these
receptors are indicated by ’n ¼ 2�n=N for n ¼ 1; . . . ; N.
For analytical convenience, we assume that the gradient
field takes an exponential profile, as was recently realized
in experiments utilizing the social amoeba Dictyostelium
[5,17]. The local concentration at the nth receptor is Cn ¼
C0 exp½p2 cosð’n ��Þ�, where C0 is the background con-

Exponential
Gradient

nL
1ns

0C

pSteepness

Direction

Ligand
Receptor

d

k
K

k

FIG. 1. Schematic representation of our model: a circular cell,
covered with receptors, is placed in an exponential gradient. The
forward and backward rates k� control the transition between
the bound and unbound states for the receptors.
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centration, p denotes the gradient steepness, and � indi-

cates the gradient direction. By its definition, p � L
C0
j ~rCj

quantifies the percentage concentration change across the
cell length L. Like a spin in physics, each receptor switches
between two states: either active (sn ¼ þ1) or inactive
(�1). For independent receptors, a receptor is activated
only if it is bound by a ligand and inactive otherwise. Let
the energy associated with the state sn ¼ þ1 (or �1) be
�"n (orþ"n) in units of the thermal energy kBT. Then the
‘‘on’’ probability of the nth spin is given by the Boltzmann
distribution: Pon ¼ e"n=ðe"n þ e�"nÞ. For simple receptor-
ligand kinetics (Fig. 1), we have Pon ¼ Cn=ðCn þ KdÞ in
chemical equilibrium where Kd ¼ k�=kþ is the dissocia-
tion constant. Thus, the free energy is given by:

"n¼1

2
ln
Cn

Kd

¼1

2
ln
C0

Kd

þp

4
cosð’n��Þ��0þhn: (1)

We define three statistical quantities ðz0; z1; z2Þ �
ðPnsn;

1
2

P
nsn cos’n;

1
2

P
nsn sin’nÞ, where z0 is a measure

of the overall receptor activity and where z1 and z2 measure
the asymmetry in the receptor states. Using the transfor-
mation ð�1; �2Þ � ðp cos�;p sin�Þ, we can write the sys-
tem’s Hamiltonian as H Nfsng ¼ �P

n"nsn ¼ ��0z0 �
ð�1z1 þ �2z2Þ=2 and compute its logarithm partition func-
tion as follows:

lnQN ¼ ln
YN
n¼1

ðe"n þ e�"nÞ ¼ XN
n¼1

ln½2 coshð�0 þ hnÞ�

¼ N lnð2 cosh�0Þ þ Np2

64cosh2�0

þOðp4Þ; (2)

where in the last step the summand is expanded in powers
of p and the sum is replaced by an integral over ½0; 2��.

The partition function contains all the thermodynamic
information we need to infer the gradient parameters p and
�, or alternatively, the transformed parameters �1 and �2.
Since p2 ¼ �2

1 þ �2
2, we have by Eq. (2):

E½z1;2� ¼ 2
@ lnQN

@�1;2

¼ �1;2NC0Kd

4ðC0 þ KdÞ2
þOðp3Þ; (3)

Var ½z1;2� ¼ 4
@2 lnQN

@�2
1;2

¼ NC0Kd

2ðC0 þ KdÞ2
þOðp2Þ: (4)

In addition, one can check that Cov½z1; z2� ¼ 0. Thus, for
small p, the joint probability density of z1 and z2 is

fðz1;2j�1;2Þ� 1

2��2
exp

�
�ðz1���1Þ2þðz2���2Þ2

2�2

�
;

with � � NC0Kd=½4ðC0 þ KdÞ2� and �2 ¼ 2� [17]. It is
easy to show that the maximum likelihood estimator
(MLE) [18] of �1;2 is �̂1;2 ¼ z1;2=�. As an orthogonal

transformation, the MLEs of p and � are given by p̂ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�̂2
1 þ �̂2

1

q
¼ ��1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z21 þ z22

q
and �̂ ¼ arctanð�̂2=�̂1Þ ¼

arctanðz2=z1Þ, respectively. By the properties of the MLE,

both p̂ and �̂ tend to be unbiased and normal in the largeN

limit, i.e., p̂!d N ðp;�2
pÞ and �̂!d N ð�;�2

�Þ, where

‘‘!d ’’ denotes convergence in distribution. The asymptotic
variances �2

p and �2
� can be derived from the Fisher

information matrix [18], which is diagonal here since p
and � are independent. Thus, we have

�2
p ¼ 1=E½ð@p lnfÞ2� ¼ �2

�2
¼ 2

�
¼ 8ðC0 þ KdÞ2

NKdC0

; (5)

�2
� ¼ 1=E½ð@� lnfÞ2� ¼ �2

�2p2
¼ 2

�p2
¼ �2

p

p2
: (6)

According to the Cramér-Rao inequality,�2
p and�

2
� set the

lowest uncertainties of gradient measurements from an
instantaneous sampling of the receptor states [18]. The
analytical approximation of each variance is plotted as a
function of the background concentration C0 [Fig. 2(a)]
and the gradient steepness p [Fig. 2(b)], which agrees well

with the sample variance of p̂ or �̂ numerically obtained
from ourMonte Carlo simulations. We can see that both�2

p

and �2
� reach a minimum at C0 ¼ Kd [Fig. 2(a)], while

only the error in direction estimation depends on the
gradient steepness (i.e., �2

� � p�2) as shown in Fig. 2(b).

Since the gradient steepness increases with the cell size
(i.e., p� L), larger cells are able to sense the gradient
direction with higher accuracy.
The above results are derived from a single snapshot of

the system. If the cell integrates receptor signals over some
time interval T , then averaging over multiple measure-
ments can appreciably reduce the errors of gradient sens-
ing. However, the capacity of such averaging is limited by
the expected time it takes for every independent measure-
ment. As shown in [4,9], the time to complete a single
measurement is roughly twice the system’s correlation
time �, resulting from the diffusion and binding of ligands.
So the number of independent measurements that a cell can
make within T is roughly T =ð2�Þ, which leads to a
corresponding reduction of measurement uncertainties.
The correlation time can be decomposed as � ¼
�rec þ �diff , where �rec ¼ 1=ðk� þ C0kþÞ is the time scale
of receptor-ligand reaction and �diff describes the diffusive
transport time of ligands. Let � � �diff=�rec, then the mea-
surement is reaction limited if � � 1 and diffusion limited
if � � 1 [19]. From the above arguments we find that
averaging signals over T yields a lower uncertainty,

�2
p;T

’2�

T
�2

p¼4�recð1þ�Þ
�T

¼16ð1þ�Þ
NT k�

�
1þKd

C0

�
: (7)

For small background concentrations (C0 � Kd), �diff ¼
N=ð2�LDKdÞ where D denotes the ligand diffusion coef-
ficient [7,9,19], and the uncertainty reduces to �2

p;T
’

16=ðNTC0kþÞ þ 8=ð�TDLC0Þ. This expression resem-
bles the result derived for the one-dimensional case [13]
and contains two terms: the first one is determined by the
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chemical kinetics, and the second one, up to a geometric
constant, is exactly the Berg-Purcell limit [7,11]. We shall
have similar results for the direction inference, since
�2

�;T
¼ �2

p;T
=p2. For typical eukaryotic cells, it has

been estimated [9,19] that � � 1, which implies �2
�;T

’
16ð1þ Kd=C0Þ=ðNp2T k�Þ � 1=ðNp2Þ. Assuming that
the number of receptors in our model scales with the cell

size as N ¼ N0L
� with 0 	 � 	 2, we find �2

�;T
�

L�ð2þ�Þ. For comparison, the Berg-Purcell analysis con-
sidered only the mean concentration measurement, with a
limit that scales as �2

c;T
� L�1 [7]. Our results thus in-

dicate that directional sensing is much more sensitive to the
cell size.

Our analysis above, which extends beyond the Berg-
Purcell framework by providing a direct calculation of
the directional sensing limit �2

�;T
, was carried out for

independent (i.e., noncooperative) receptors, as is assumed
to be the case for most eukaryotic cells that have been
studied. It has been proposed that cooperativity can
dampen the fluctuations in receptor signals and thus help
concentration sensing to approach the physical limit of
diffusive counting noise [10]. For spatial gradient sensing,
we now ask about possible effects of receptor cooperativity

as has been found in many bacterial cells [20–22].
Intuitively, short-range interactions make it possible for
receptors to collectively respond and sharpen the asymme-
try of receptor signals. It is natural to speculate that such
enhanced sensitivity may set new and lower limits for
directional sensing. To incorporate potential receptor co-
operativity, we extend our model to include a nearest-
neighbor interaction J (again, in units of kBT). Now, the
activity of a receptor, still represented by sn, is determined
not only by the local concentration but also by the states of
its neighboring receptors. This means that an unbound
receptor is not necessarily inactive, as it may have been
affected by active receptors nearby.
Because the local concentration is identical for nearest-

neighbor sites (i.e., "n ¼ "n�1), the Hamiltonian of our

Ising chain can be written in a symmetric form: ~H Nfsng ¼
�P

N
n¼1½Jsnsnþ1 þ "nðsn þ snþ1Þ=2�, with the boundary

condition sNþ1 ¼ s1. The corresponding partition func-

tion is ~QN ¼ P
s1
. . .

P
sN
e�ðH0þH1Þ, where H0 �

�P
n½Jsnsnþ1 þ �0ðsn þ snþ1Þ=2� represents the

Hamiltonian of an isotropic reference system and where
H1 � �P

nsnhn ¼ � p
4

P
nsn cosð’n ��Þ results from

the spatial heterogeneity in concentration. For small p,
one can view H1 as a perturbation to H0. The partition

function of the reference system, ~Qð0Þ
N ¼ P

s1
. . .

P
sN
e�H0 ,

is well known and exactly solvable by the transfer matrix

method: ~Qð0Þ
N ¼ 	Nþ þ 	N�, with 	� ¼ eJ cosh�0 �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

e�2J þ e2Jsinh2�0

p
(see the supplementary material [23]

for details). Thus, ln ~Qð0Þ
N ’ N ln	þ. The statistical

perturbation theory inspires us to write ~QN ¼
~Qð0Þ

N

P
s1
. . .

P
sN
e�H0e�H1= ~Qð0Þ

N ¼ ~Qð0Þ
N he�H1i ’ 	Nþ½1þ

p
4

P
nhsni cos
n þ p2

32

P
n;mhsnsmi cos
n cos
m�, where we

denote 
n � ’n �� for short and use h
 
 
i to represent
the expectation over the reference system. Because of
isotropy, hsni is independent of its location (index n) and
hence

P
nhsni cos
n ¼ hsni

P
n cos
n ¼ 0. With details

provided in the supplementary material [23], we further
calculate that

P
n;mhsnsmi cos
n cos
m ¼ N

2 ð1þ 2�Þ=ð1þ
e4Jsinh2�0Þ, where � � ½lnð	þ=	�Þ��1 defines the corre-
lation length of the classic Ising chain. Finally, the log-
partition function of our model is found to be

lnfQN ’ N ln	þ þ Np2ð1þ 2�Þ
64ð1þ e4Jsinh2�0Þ

þOðp3Þ; (8)

which reduces to Eq. (2) as J ! 0. Now we rewrite ~H N ¼
�J

P
nsnsnþ1 � �0z0 � ð�1z1 þ �2z2Þ=2, with the same

notations for �i and zi, i ¼ 0, 1, 2. As has been demon-
strated before, the MLEs of �1 and �2 can be found from
the joint Gaussian distribution of z1 and z2, except now we
have to replace � by ~� � 1

16Nð1þ 2�Þ=ð1þ e4Jsinh2�0Þ.
So the MLEs of p and � are given by ~p¼ ~��1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z21þz22

q
!d

N ðp; ~�2
pÞ and ~� ¼ arctanðz2=z1Þ !d N ð�; ~�2

�Þ. Similar

FIG. 2 (color online). (a) The uncertainties �2
p and �2

� versus
lnðC0=KdÞ under a gradient of steepness p ¼ 10%; (b) �2

p and

�2
� versus p for fixed background concentrations C0 ¼ Kd. In

both (a) and (b), the solid lines represent our analytical expres-
sions while the symbols correspond to the sample variances of p̂
and �̂ computed based on 5000 independent Monte Carlo real-
izations of 80 000 receptors. (c) ~�2

� as a function of lnðC0=KdÞ
for different values of the cooperativity strength J, under a
gradient of steepness p ¼ 8% and using N ¼ 80 000. (d) The
critical cell size below which spatial gradient sensing is ineffec-
tive, normalized by the critical cell size in the absence of
cooperativity, as a function of J.
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to Eqs. (5) and (6), their variances are ~�2
p ¼ 2= ~� and

~�2
� ¼ ~�2

p=p
2 ¼ 2=ð ~�p2Þ [24]. We plot ~�2

� as a function

of lnðC0=KdÞ for different values of J in Fig. 2(c).
Regardless of the receptor coupling strength, this error is
minimal at C0 ¼ Kd (or �0 ¼ 0) where the correlation
length becomes � ¼ 1= lnðcothJÞ ’ 1

2 e
2J and ~�2

� ’
32=½Np2ð1þ e2JÞ� ¼ �2

�=ð1þ e2JÞ.
Receptor cooperativity may help a smaller cell of di-

ameter ~L to reach the same level of directional sensing
accuracy as achieved by a larger cell with diameter L but
noncooperative receptors, i.e., ~�2

�ð ~LÞ ¼ �2
�ðLÞ. By our

previous scaling assumption, the receptor number of the
smaller cell is ~N ¼ Nð ~L=LÞ�. If L� denotes a critical cell
length below which spatial sensing is infeasible with inde-
pendent receptors, then adding cooperativity will result in a

smaller critical size, given by ~L� ’ L�ð1þ e2JÞ�1=ð2þ�Þ at
C0 ¼ Kd. This is shown in Fig. 2(d) where we have plotted
~L�=L� as a function of J for three different values of the
scaling factor �. As a specific example, we take L� ¼
8 �m which corresponds to the typical size of a
Dictyostelium amoeba. For J ¼ 0:5, the new critical cell
length becomes ~L� � 4–6 �m, comparable to the size of
many bacterial cells. It is worth remarking that although
receptor interaction improves the precision of gradient
sensing for C0 close to Kd, it enlarges the errors when C0

is far away from Kd [Fig. 2(c)]. Note that the receptor
configuration tends to be homogeneous in both the large
and small concentration extremes; i.e., it is dominated
either by active receptors at C0 � Kd or by inactive re-
ceptors at C0 � Kd. Cooperativity exaggerates such a
tendency to reach an ordered phase, an effect which inter-
feres with the cell’s ability to extract information about the
spatial heterogeneity from receptor states. Therefore, the
improved accuracy at C0 near Kd is accompanied by a
narrowed range of background concentrations for which
the cell can be sufficiently sensitive [Fig. 2(c)]. Such a
tradeoff could be a limiting factor for the introduction of
receptor coupling into the spatial sensing mechanism.

It is commonly believed that prokaryotic cells such as
E. coli are too small to perform spatial measurements of
chemical gradients. However, recent experimental obser-
vations show that at least one type of vibrioid bacteria
(typical size 2� 6 �m) are able to spatially sense gra-
dients along distances as short as 5 �m, and the proposed
sensing system has two bipolar sensor regions containing
receptor clusters [15]. Our calculations allow for the pos-
sibility that smaller organisms could employ the spatial
sensing strategy with the aid of short-range receptor inter-
actions. As spatial sensing is argued to be superior to
temporal sensing for fast swimming bacteria [15,25], this
possibility is of significant theoretical interest and remains
a challenge for future empirical studies.
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