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We study a stochastic aggregation model for the assembly of the contractile ring from a broad band of

nodes during cytokinesis in fission yeast. We found that bands of nodes condense into rings when the

range of node interactions is larger than the width of the band. Wide bands are unstable to clump

formation due to Poisson density fluctuations. We derive expressions for node kinetics and times for ring

vs clump formation and test them using numerical simulations. These results suggest clump formation

mechanisms in mutant cells.
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The ability of eukaryotic cells to move and change shape
relies on the plasticity of the cellular cytoskeleton. The
components of the cytoskeleton (actin, tubulin, molecular
motors) spontaneously come together to generate filamen-
tous structures over scales much larger than the size of
individual proteins. Understanding the physics that govern
the assembly of these adaptive meshworks is an area of
considerable research [1–6]. One of the best examples of
such a subcellular self-organization process is the assem-
bly of the actomyosin contractile ring during cytokinesis
[7–10], the last step of cell division. A model organism for
cytokinesis is fission yeast [11–14], where the contractile
ring forms through the condensation of a broad band of
�65 ‘‘nodes’’ [9,15,16]. The nodes are macromolecular
complexes bound to the inner part of the cell membrane
and contain myosin-II, actin filament nucleator formin
Cdc12p, scaffolding protein Mid1p, and F-BAR domain-
containing Cdc15p [13,17]. During mitosis, nodes as-
semble in the middle of the yeast cell over a broad band,
1:8 �m in width, that condenses into a ring within
�10 min ; see Fig. 1(a).

A proposed mechanism by which nodes condense into a
ring is ‘‘search, capture, pull, and release’’ (SCPR) [9] [see
Fig. 1(c)]. In this model, Cdc12p nucleates actin filaments
that polymerize out of nodes. These filaments grow along
random directions parallel to the cell membrane. When the
tip of an elongating filament comes in close vicinity of a
target node, an actomyosin connection is established. Once
connected, the myosin motors at the target exert forces that
pull the pair of nodes toward one another. Myosin may
depolymerize actin as it slides along the filament [3] and
reduce Cdc12p-mediated actin elongation through tension
[9]. Actin filament severing protein cofilin breaks up con-
nections, allowing nodes to reinitiate actin elongation
along a new direction [9].

Simulations of the 2D SCPR model generated rings
consistently with experiment [Fig. 1(a)]. However, for
parameter values different than those seen in experiment,
the model generated disconnected clumps [9]. Recently,
Hachet and Simanis [18] observed node clump formation

in cells with mutations in node proteins such as Cdc12p
[see Fig. 1(b)]. To better understand the mechanism of
clump vs ring formation, here we present analytical and
numerical results of a stochastic node aggregation model.
In the model, nodes with attached myosin form clumps
through connections by filaments of varying length. This
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FIG. 1 (color online). Formation of contractile ring by aggre-
gation of broad band of nodes. (A) Images of dividing wild-type
cells expressing myosin marker Rlc1p-3GFP [9]. A broad band
of nodes bound in the inner part of the cell membrane condenses
into a ring in �10 minutes. The ring subsequently constricts.
(B) Images of mitotic cdc12p-112 cells (formin mutants) ex-
pressing Rlc1p-GFP at the restrictive temperature: clumps form
instead of rings [18]. (C) 2D stochastic aggregation model. Left:
nodes attract one another through transient connections by actin
filaments polymerized by formins at the nodes. Right: model
parameters. l, average distance between neighboring nodes; d,
size of pairwise node movement per connection event; and �,
typical length of actin filaments.
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mechanism differs from previous studies in which fila-
ments collapse into bundles through mobile motors [1–6].

We consider the model of Fig. 1(c) in which each node
on a 2D surface representing the inner cell membrane can
establish a connection with another node at a distance r

away with rate qðrÞ ¼ Qða=rÞe�r=�. Here, the 1=r depen-
dence reflects the diluteness in the search process as the
actin filaments grow out of Cdc12p nucleators in the nodes,
Q is a rate that depends on total number of Cdc12p per
node, and the exponential term introduces an upper cutoff
of order � representing the typical length at which actin
filaments grow before severing by cofilin. Parameter a is a
capture radius: it represents the distance over which the
tips of the growing actin filaments are captured by target
nodes [9]. Myosin pulling and severing of connections is
modeled as follows. When a connection between two
nodes is established, the nodes move toward one another
by distance d instantaneously (when r < 2d, they are
moved by r=2 such that they overlap). After this move-
ment, the connection is assumed broken. For simplicity,
excluded volume interactions are neglected.

The model of Fig. 1(c) combines two types of node
movement: (i) active diffusion due to the randomness in
connections with neighbors (described by a diffusion co-
efficient, D), and (ii) directed transport towards regions of
higher density with local velocity v. Monte Carlo simula-
tions showed that active diffusion is not strong enough to
maintain an initially homogeneous 2D state of nodes at
concentration c. Plots of the mean square node displace-

ment vs time indicate that an initial diffusive t1=2 regime is
followed by directed transport and clump formation [see
Fig. 2]. The following scaling arguments that neglect nu-
merical prefactors describe the kinetics of clump formation
observed in simulations.

In a homogeneous 2D system, clumps form near regions
that happen to have a higher density initially due to Poisson
fluctuations around the average concentration. Consider a
node at t ¼ 0. Since the step size of the node’s walk is d, its
initial diffusion coefficient is

D0 � Qtotd
2; Qtot �

Z 1

0
cqðrÞ2�rdr � Q

a�

l2
: (1)

Here Qtot is the total rate of making connections to other

nodes and l � c�1=2 is the typical distance between neigh-
boring nodes [see Fig. 1(c)]. Note that most connections
are made at distance of order � since the integral in Eq. (1)
is dominated by r� �. Thus a node can connect with
approximately N� � �2=l2 nodes at distance of order �.
The initial Poisson fluctuations in the number of nodes

over such a distance is �N� ¼ N1=2
� ¼ �=l. Therefore,

initially, there is a direction in space along which the
node is attracted to by an excess of �N� nodes. The
node will move along this direction with an initial velocity:

v0 � Q0d�N� ¼ Q0d�=l; Q0 � Qa=�; (2)

where Q0 is the connection rate for nodes separated by
distance �. The expressions in Eqs. (1) and (2) define a
length scale l� and time t� after which transport dominates

diffusion, l� ¼ v0t
� ¼ ðD0t

�Þ1=2 [19]
l� ¼ �d=l; t� ¼ 1=Q0: (3)

There are two asymptotic limits: (1) Regime 1 (R1): d � l,
or, equivalently, l� � �, and (2) Regime 2 (R2): d � l
(l� � �). Throughout, we consider d � � and l � �.
For R1, active diffusion is not strong enough to move

nodes over distances beyond their interaction range. Thus,
nodes continue to move and coalesce with speed v0 ac-
cording to the initial concentration fluctuations past t�.
This linear transport of nodes persists until nodes travel a
distance of order �; at about this point in time, regions of

FIG. 2 (color online). Monte Carlo simulations of node aggre-
gation showing kinetics of clump formation in Regime 1 (d �
l � �). Nodes were placed according to a 2D uniform proba-
bility distribution. qðrÞ was set to zero for r > 3�. Periodic
boundary conditions were used. (A) RMS displacement vs
time. Slope 1=2 regime: active diffusion up to t�; slope 1 regime:
clump formation that ends at tclump; slope 0 regime: nodes

trapped in isolated clumps. (B) Snapshots of node configurations
at different times. (C) Test of tclumpQ

0 � l=d, Eq. (4). tclump is the

time at which the slope of the linear regime in A decreases by
20% �10%. Solid (black) line: tclumpQ

0 ¼ 0:044ð6Þl=d is a

linear fit to the subset of the data most asymptotic in R1.
Dashed lines are guide-to-the-eye curves indicating approach
to common asymptotic regime; deviations occur for l approach-
ing �. Inset shows tclump ¼ 0:73ð3Þt�, in agreement with Eq. (4).
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high initial density absorb the nodes of the less dense
regions [see Fig. 2(b)]. As a result, denser regions of size
� separate from regions depleted of nodes of the same size
and form clumps separated from one another by rclump over

a time tclump, where

rclump��; tclump��=v0� l=ðQ0dÞ ðR1;d� lÞ: (4)

These isolated clumps subsequently self-collapse rapidly:
as the interaction of nodes with their neighbors that segre-
gate into different clumps is lost, clumps condense into
spots over a time much shorter than tclump. We tested this

scaling expression for tclump in Fig. 2. We also tested

rclump � � by showing that tclump � t� numerically, where

t� is the time when the root mean square displacement
(RMSD) reaches �.

For R2, active diffusion is strong: nodes travel distances
LðtÞ larger than the interaction range � [see Fig. 3(a)]. This
leads to different kinetics. As nodes get displaced over
LðtÞ> �, the diffusion coefficient remains unchanged
from Eq. (1). However, nodes experience an increasingly
larger transport rate vt due to Poisson fluctuations over
distances LðtÞ. Since 2D diffusion is marginally compact
[20], nodes sample their exploration volume uniformly,
within logarithmic corrections. Thus, replacing � by LðtÞ
in Eq. (2):

vt � Q0dLðtÞ=l: (5)

The distance at which transport by vt dominates diffusion

marks the time at which clumps start to form, rclump ¼
vtclump

tclump ¼ ðD0tclumpÞ1=2. This gives
rclump � �ðd=lÞ1=2; tclump � l=ðQ0dÞ ðR2; d � lÞ:

(6)

The simulations of Fig. 3(a) verify that, unlike Fig. 2(a),
there is no intermediate linear regime: once transport
dominates diffusion at tclump, groups of nodes within

rclump ¼ LðtclumpÞ of one another collapse rapidly into

isolated clusters; see Fig. 3(b). The scaling of tclump in

Fig. 3(c) is consistent with Eq. (6). The exponent of
rclump in Fig. 3(c) differs from 1=2, possibly due to a

slow crossover from R1 (slope 0), logarithmic terms, or
unaccounted many-body correlations that develop over
time. Further numerical tests, deeper in R2, were prohib-
ited by the large number of nodes required (>107).
The above results describe a bulk system. Consider now

a 2D band of nodes of width w. The following arguments
agree with simulations in Fig. 4. Because of concentration
gradients, nodes at distances of order w from the middle of
the band experience directed transport towards the center
with velocity vw � R

�
��

R1
0 cðr; �ÞqðrÞd cos�drd�. This

integral is over a radial coordinate system centered at a
node, cðr; �Þ is node concentration, and d cos� is distance
traveled towards the center for connections at angle�. The
integral is dominated by r of order the smallest of w and �:

vw �
�
Qadcw; w � �
Qadc�2=w; w � �;

; (7)

assuming that the typical gradient across the band is of
order c=w, where c is concentration in the middle.
For narrow bands,w � �, the velocity vw defines a time

over which boundary nodes travel distance w:

tshrink � w=vw � l2=ðQadÞ ðw � �Þ: (8)

This time is shorter than tclump, for both R1 and R2, since

tshrink=tclump ¼ l=� � 1, using Eqs. (4) and (6). Thus,

narrow bands condense (‘‘shrink’’) into rings before
clumps have sufficient time to form.
Wide bands, w � �, do not condense into rings. In this

case, tshrink � w2l2=ðQad�2Þ. There are two subcases.

(i) For very wide bands, w � �ð�=lÞ1=2, tclump � tshrink,

using Eqs. (4) and (6). Therefore, clumps form before the

band condenses. (ii) Bands with � � w � �ð�=lÞ1=2 split
into smaller bands over a time of order tshrink. To see this,
consider two nodes within interaction range, i.e., within �
of one another. Because of the density gradient, the differ-
ence in their condensation velocities toward the middle is
of order �v� � Qad�2�c�=w, where �c� � c�=w.
These nodes lose contact with one another when their
relative velocity transports them over distances of order

FIG. 3 (color online). Simulations as in Fig. 1, but for Regime
2 (l � d � �). (A) RMS displacement vs time. Slope 1=2
regime: active diffusion; slope 0 regime: nodes trapped in
clumps. (B) Snapshots of node configurations. (C) Test of
Eq. (6). Thick (red) lines show predicted slopes in R1, R2;
thin (black) lines show fits. tclump is time required to reach

RMSD plateau (panel A) and rclump is corresponding distance.
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�. This occurs over time tsplit ¼ �=�v� � tshrink causing

the band to lose internal connectivity as it is about to form a
ring [see Fig. 4(a)].

Let us apply the above results to fission yeast, using
parameter values obtained from prior experiments [9,15]:
d ¼ 0:45 �m, l ¼ 0:77 �m, w ¼ 1:8 �m, a ¼ 0:1 �m,
1=Q ¼ 0:67 min , and � ¼ 1 �m. These values are near
the R1-R2 boundary. Since �=w ¼ 0:56, the band is just
narrow enough to allow condensation. Simulations using
these values indicate tshrink ¼ 15 min [13 min using
Eq. (8)], very close to experiments; see Fig. 1. For a 2D
bulk of nodes we find tclump ¼ 15 min with simulations

[12 min using Eq. (4)]. We suggest that the small difference
in these two times leads to clump formation in cdc12-112
mutants in Fig. 1: a small change in the polymerization rate
of actin, for example, may result in slightly shorter actin
filaments causing the cell to shift to the � < 0:28w regime
of Fig. 4(c). Since Cdc15p recruits Cdc12p to the nodes,
and since the septation initiation network pathway pro-
motes proper Cdc15p localization, we suggest that a simi-
lar mechanism explains clump formation in Cdc15p and
septation initiation network pathway mutants [18]. Image
analysis of actin in these cells [11,15] could test this
prediction. Another prediction of the model is the forma-
tion of fragmented linear structures for intermediate values
of � [Fig. 4(a)].

Cells may have optimized parameter values.
Presumably, the width of the node band is limited by the
accuracy with which cells locate their middle [21]. We

speculate that yeast establishes filaments long enough (��
w) to achieve condensation without clumps, but not much
longer; the latter would provide little benefit since the
condensation time is independent of �, to leading order.
Condensation is accelerated by smaller l (high node den-
sities); thus, the number of nodes may reflect the balance
between speed and cost required to generate nodes.
Additionally, the condensation time decreases with in-
creasing node step d, whose upper limit is ��=2. This
could be the reason why d=� � 0:5 in cells.
Future work is required to explore the following: (i) In

Eq. (1), the total connection rate increases with concentra-
tion, though in reality it is limited by the number of formins
per node. This saturation can be accounted for using a
density-dependent Q. (ii) Connections between nodes in
close proximity ‘‘screen’’ long connections; thus, � de-
pends on node concentration. (iii) Fluctuations in the num-
ber of myosins per node could enhance clump instabilities.
(iv) Additional mechanisms, such as cross-linking, may
stabilize aligned nodes and contribute to ring formation in
cells with defective nodes [14,18].
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FIG. 4 (color online). Simulations of condensation of a band of
nodes (periodic boundary conditions vertically). Nodes were
placed according to Gaussian distribution with variance w=2.
(A) Initial distribution (first panel) and snapshots of successful
condensation or clump formation for different � (l=w ¼ 0:0315,
d=w ¼ 0:0125, a=w ¼ 0:25). (B) Condensation time (time re-
quired for the standard deviation to decrease by 1=2) vs �=w
using a=w ¼ 0:25. For �=w < 0:28 the band does not shrink.
(C) Test of tshrink � l2=ðQadÞ. Solid (black) line is linear fit to
R1 data: tshrink ¼ 0:078ð5Þl2=ðQadÞ.
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