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We present an alternate solution of a Gaussian spin-glass model with infinite ranged interactions and a

global spherical constraint at zero magnetic field. The replicated spin-glass Hamiltonian is mapped onto a

Coulomb gas of logarithmically interacting particles confined by a logarithmic single particle potential.

The precise free energy is obtained by analyzing the Painlevé �IV½n� function in the n ! 0 limit. The

large-N thermodynamics exactly recovers that of Kosterlitz, Thouless, and Jones [Phys. Rev. Lett. 36,

1217 (1976)]. It is hoped that the approach here can be extended to apply to systems beyond the spherical

model, particularly those in which destabilizing terms lead to replica symmetry breaking.
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Spin-glass systems are an important component of the
long-standing effort to understand the statistical mechanics
of disordered systems. In particular, spin-glass models
exemplify the interplay of frustration—an outgrowth of
quenched randomness—and thermal fluctuations [1].
Attention has centered on the phase transition from a
high temperature paramagnetic phase to the spin-glass
phase, in which the spins are frozen in random directions
over macroscopic time scales [2–6].

Several decades ago, an alternative yet simple, non-Ising
spin-glass model was proposed by Kosterlitz, Thouless,
and Jones (KTJ) based on the exactly solvable spherical
model (SM) [7], which has been termed the spherical spin-
glass model (SSGM). KTJ constructed a solution based on
the known methodology of the SM that depends on the
density of eigenvalues of the exchange coupling matrix [8].
For the SSGM, the exchange coupling matrix in the
large-N limit is effectively a Wigner-Dyson randommatrix
that follows a semicircle law distribution. One of the most
appealing features of the KTJ analysis was its prediction of
a spin-glass transition without the need to address replica
symmetry breaking, as the quenched averaged free energy
can be computed without requiring replicas at all. A second
approach attempted to work within the replica framework,
pointing out a Parisi-like order parameter and possible
replica symmetry breaking perturbations [9,10].

In this Letter, we introduce a third approach that solves
the SSGM without recourse to the large-N random matrix
analysis of KTJ. The SSGM is mapped onto an effective
Hamiltonian of logarithmically interacting charges in a
logarithmic single particle potential, the number of replicas
corresponding to the number of particles n. This approach
does not require any assumptions about the replica struc-
ture, and the n ! 0 limit can be extrapolated by using
inductive diagrammatic arguments to connect the grand
canonical and canonical ensembles. The partition function
is also shown to be equivalent to the Painlevé �IV½n�
function, which is solved explicitly to yield a spin-glass
transition that is in complete agreement with the results of

KTJ. It is hoped that the spin-glass–Coulomb-gas connec-
tion and the methods described here are general enough to
be applied to solve both the Sherrington-Kirkpatrick and
Edwards-Anderson models beyond the limitations im-
posed by existing mean-field and numerical approaches.
We note that a general relationship between replica-based
Hamiltonians and Painlevé transcendents has been rigor-
ously demonstrated [11], and therefore the approach can be
possibly extended to the broader category of replica-based
or disorder-induced critical phenomena.
The SSGM is based on a strictly Gaussian model, in

which the spins take on continuous values in a specified
range. The Hamiltonian for N spins is

H sg ¼ �X
i>j

JijSiSj þ�
X
i

S2i ; (1)

where the quantity � is the Lagrange multiplier that en-
forces the spherical constraint,

PN
i¼1hS2i i ¼ N, and each

exchange coupling Jij is subject to a Gaussian distribution

PðJijÞ / e�NJ2ij=2
�J2 , with �J ¼ J=T. Since we are interested

in the quenched average of the free energy, we apply the
replica technique and consider the annealed average of the
nth power of the partition function Zn. In the first step we
integrate over the Jij’s in the usual manner to yield an

effective four-spin interaction that couples different repli-
cas, with a and b replica indices that range from 0 to n.
Next, these terms can be decoupled by introducing an

auxiliary field Q
$
, in a Hubbard-Stratonovich transforma-

tion,

Zn ¼ exp

�
�Qab

X
i

Sai S
b
i �

N

2 �J2
ðQabÞ2 ��

X
i;a

Sa2i

�
: (2)

We can then integrate out the Sai ’s:

Zn ¼ exp

�
�N

2
Tr lnð I$�þQ

$Þ � N

2 �J2
TrðQ$2Þ

�
: (3)

In the final manipulation, we have to integrate over the

matrix Q
$
, which is real and symmetric. We are led to the
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evaluation of a partition function over the eigenvalues

of Q
$
, �i having the form Zn ¼

R
exp½H CGð�Þ� �

d�1; . . . ; d�n, where the Hamiltonian H CG corresponds
to a one-dimensional gas of particles with logarithmic
interactions, which we term a Coulomb gas (CG) [12]:

H CGð�Þ ¼
X
i

Vð�iÞ þ A
X
i>j

lnj�i � �jj; (4)

with the single particle potential

Vð�Þ ¼ N

2
ln½�þ �� þ N

2 �J2
�2: (5)

For the rest of this paper, we fix A ¼ 2 at the unitary
ensemble, as this allows us to adapt results now in the
literature [12–14]. We believe that this substitution pre-
serves the essential features of the model.
As a prelude to the full calculation of the partition

function, we outline the development of a diagrammatic
approach to its evaluation. In the replica formalism, the
limit n ! 0 must be taken with care. Our basic strategy is
to first work within the canonical ensemble and observe the
general trend of its n dependence in order to transform to
the grand canonical ensemble, creating an adjustable n that
can be extrapolated to zero. A useful method for treating
the logarithmic interaction is a virial expansion of Zn:

Zn¼ 1

n!

Z
d�1d�2; . . . ;d�ne

�H½�i� ¼ 1

n!

Z
d�1d�2; . . . ;d�ne

�V½�i�þ 1

n!

Z
d�1d�2; . . . ;d�ne

�V½�i�
�
�A

X
i>j

lnj�i��jj
�
þ��� :

(6)

Take, for instance, an arbitrary five-vertex diagram that we term L5 as shown in Fig. 1. The expression to which this
diagram corresponds is given by

L5¼M5

Z
d�id�jd�kd�ld�me

�V½�i�ð�Alnj�j��ijÞe�V½�j�ð�Alnj�k��jjÞ2e�V½�k�e�V½�l�ð�Alnj�m��ljÞe�V½�m�; (7)

where the quantity M5 ¼ n!n1n2=½ðn� 5Þ!3!2!� is the
overall weight of the diagram. Next, one accounts for the
number of ways of assigning the n total vertices to the 5
vertices in the diagram. Then, one multiplies by symmetry
factors from permuting lines connected to a common ver-
tex, yielding n1 ¼ n2 ¼ 1=2. One straightforwardly infers
that any diagram is simply a product of expressions in-
volving connected diagrams followed by the factor Zð0Þ

n�M,
where the ‘‘bare’’ partition function is given by Zð0Þ

n ¼
1
n! ½

R
d�e�V½���n.

The grand partition function �ðzÞ ¼ P1
n¼0 Znz

n can be

formally constructed with each vertex multiplied by a

fugacity factor z such that�ð0ÞðzÞ ¼ exp½zq0�, where q0 �R
d�e�V½��. In the limit n ! 1, �ðzÞ and Qn satisfy the

relations lnZn ¼ ln�ðzðnÞÞ� nzðnÞ and n ¼ @
@z�ðzÞ. To

extract the n ! 0 limit, the n dependence of L5 reduces to
n� 4!ð�1Þ4. Dividing out n, and reexpressing the factorial
in terms of a � function, we are left with the remainder
�ð�1Þ5 R1

0 t4e�tdt.

Next we make use of the zeroth order, noninteracting
term in the partition function, qn0 � 1þ n lnq0. Since L5

scales as 1=q50, we can absorb this factor by recasting L5 as

�ð�1Þ5 R1
0 dtðt5e�q0t=tÞ. Finally, this allows the virial

expansion to be completely factored in terms of its n
dependence. The integral form of the logarithm lnq0 ¼R1
0 dtðe�t � e�q0tÞ=t can be substituted with e�q0t ¼

�ð0ÞðtÞ or the noninteracting grand partition function at
negative fugacity. The disorder-averaged free energy is,
then,

hlnZi ¼
Z 1

0
dt½e�t ��ð�tÞ�=t: (8)

Additionally, if the partition function of the n-component

system takes the form Zn ¼
R
enðx1þx2þ���þxkÞ �

fðx1; . . . ; xkÞ
Q

k
i¼1 dxi, then one can easily show that

Eq. (8) is equivalent to the standard replica calculation

hlnZi ¼ lim
n!0

ðZn � 1Þ=n ¼ dZn=dnjn¼0: (9)

Subsequently, the equation for the density can be repre-
sented as a diagrammatic series where �ðxÞ ¼ �0K and the
graphical form of K is shown in Fig. 2. K can be generated
by observing that Vð�Þ couples to the density � at the

zeroth order: �0ð�Þ ¼ ze�Vð�Þ. The tree-level diagrams of
Fig. 2(a) result in a self-consistent series for mean-field
density �MFðxÞ. The summation of these terms reduce to an
inhomogeneous Sine-Gordon equation. The proper solu-
tion is nontrivial, and a thorough analysis will be discussed
in a separate paper. In principle, one should recover the
known KTJ result:

FIG. 1. L5, a particular 5-vertex diagram in the virial expan-
sion of Zn.
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F KTJ ’
(
� J2

4T � T
4 T < Tc;

�J þ T
2 þ T

2 lnðJTÞ T > Tc:
(10)

We now leave our discussion of the mean-field theory
and focus on the full solution, which can be evaluated
exactly by using the � function theory of Painlevé systems.
The first task is to recast the Okamoto �IV½n� [14] integral
discussed by Forrester and Witte [13] into a form that is
equivalent to the partition function of Eq. (4):

�IV½n� ¼ 1

C

Z t

�1
dx1 � � �

Z t

�1
dxn

Yn
j¼1

e�x2j ðt� xjÞ�

� Y
1�j<k�n

ðxk � xjÞ2: (11)

The integrand above can be rescaled by letting xj !
yj

ffiffiffiffiffiffiffi
Na

p
, and letting t ! �

ffiffiffiffiffiffiffi
Na

p
, yielding

Zn ¼ ðNaÞ½nðn�1Þ=2þnþ��=2 Yn
j¼1

e�Nay2j ð�� yjÞ�

� Y
1�j<k�n

ðyk � yjÞ2; (12)

and the n ¼ 1 term is given by

�IV½1� ¼
Z 1

�1
ðt� xÞ�e�x2dx: (13)

Recurrence relations for �IV½n� have been thoroughly in-
vestigated by Forrester and Witte in the context of certain
randommatrix averages. These relations are well suited for
our purposes:

�IV½n� ¼ det

�
diþj

dtiþj �
IV½1�

�
; (14)

where the determinant is of an n� n matrix with indices
ði; jÞ and the relationship between �IV½n� and �IV½n� is
given by

�IV½n� ¼ 2nðn�1Þ�n=2

�Yn�1

j¼1

j!

�
ex

2n�IV½n�: (15)

It follows that the n ¼ 1 part

�IV½1� ¼ ex
2
�IV½1� (16)

is used to generate higher orders in n via Eq. (14). This
allows us to extrapolate the n dependence of �IV½n� in the
case in which� ¼ �N=2 for large positiveN. Let us place
t slightly off the real axis and consider the integral of
Eq. (13) when � ¼ �1, which can be shown to take the
general form

Z 1

�1
ðx� tÞ�j�je�x2dx ¼ 1

ðj�j � 1Þ!
dj�j�1

dtj�j�1

�
�
2

ffiffiffiffi
�

p
e�t2

Z t

0
ek

2
dk

�
; (17)

which is equivalent to the Dawson integral [15]

e�t2
Z t

0
ek

2
dk ¼

Z 1

0
e�k2 sinðktÞdk: (18)

The evaluation of the derivatives of the integral as given by
the right-hand side of (18) can be now taken:

dj�j�1

dtj�j�1

Z 1

0
e�k2 sinðktÞdk ¼ 1

2
Im

�Z 1

0
ij�j�1 exp½�k2

þ ðj�j � 1Þ lnkþ ikt�dk
�
:

We can apply the stationary phase approximation and
evaluate the integral by expanding about the extremum to
yield the following result:

�IV½1�¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�½t� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t2�8ðj�j�1Þp �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2�8ðj�j�1Þp

vuut

�exp

�
t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2�8n

p

8
þðj�j�1Þ ln

�ðt� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2�8n

p
Þ

4

�

�ðj�j�1Þ
2

� t2

8

�
: (19)

Equation (19) can be simplified by the functions fðqÞ and
gðqÞ, with q � t=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij�j � 1
p � t=

ffiffiffiffi
N

p
such that

�IV½1� ¼ gðqÞ exp½NfðqÞ�: (20)

We find empirically that the precise leading order in n
contribution to the determinant in (14) yields

�IV½n� ¼
�Yn�1

j¼1

j!

�
gðqÞneNnf1ðqÞf001 ðqÞnðn�1Þ=2; (21)

where f1ðqÞ � fðqÞ þ q2. The final expression becomes

�IV½n� ¼ e�t2n2�nðn�1Þ��n=2gðqÞnenNfðqÞf001 ðqÞnðn�1Þ=2:
(22)

Taking the appropriate derivative of Eq. (9) yields the n !
0 limit. The prefactor of Eq. (12) contains no interesting
thermodynamic information; the key contributions to the
free energy become

FIG. 2. The full diagrammatic expansion of K. An empty
circle stands for the vertex at point x, and the dark circles are
at other points. A line is simply the distance function jx� x0j.
(a) The tree-level diagrams resulting in the mean-field density
�MFðxÞ. (b) Loop contributions beyond mean-field theory.
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F ½�� ¼ �ThlnZ½��i

¼ T

�
NfðyÞ þ ln

�
2gðyÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�f001 ðyÞ

p �
� t2N

�
: (23)

The Lagrange multiplier can be eliminated by enforcing

the spherical constraint via the relation � @hlnZ½��i
@� ¼P

N
j¼1hs2j i ¼ N, yielding

1
4 ðNT=JÞð�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2�2=J2 � 8

q
þ T�=JÞ ¼ N (24)

having a solution of �> ¼ 1þ 2J2

T2 where the range of T

lies above the branchpoint structure of the square root.
However, for low enough values of T, there is no proper

mathematical solution, and �< ¼ ð ffiffiffi
8

p
J=TÞ þOð1=NÞ in

order to obey the spherical constraint. Hence, the complete
free energy is given by

F ¼�ThlnZ½�>�i

¼�NT

8

�
�ð2þT02Þ

T02 þT0
�
1þ 2

T0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T02þ4T0�2�4

p

þ8ln

� ffiffiffiffi
N

p
4T0 ½2þT0ðT0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T02þ4T0�2�4

p
Þ�
�
�4

�
;

(25)

where T0 ¼ T=J. The critical temperature is obtained from

the maximum of Eq. (25), yielding Tc ¼
ffiffiffi
2

p
J. After taking

the large-N limit, we can compare the results to KTJ.
Taking the appropriate derivatives of F we have for the
specific heat per site:

CVðTÞ ¼
�
1 T < TC;
2� ðTc=TÞ2 T > TC;

(26)

in precise agreement with KTJ, as the phase transition
contains a discontinuous 3rd derivative indicative of spe-
cific heat exponent � ¼ �1 similar to that observed in the
ideal Bose gas and the SM. Although our analysis is taken
in the unitary ensemble (A ¼ 2) rather than the orthogonal
ensemble (A ¼ 1) appropriate to the model considered by
KTJ, we expect no great discrepancies as we can general-
ize our results to account for the possibility of other
ensembles by including an additional factor B in the
spherical constraint equation. Reexpressing Eq. (24),

BN ¼ 2NT02½��
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � T0�2

p
� (27)

and solving it explicitly, we find that it is satisfied if T0 �
B=2, and therefore we expect that B and subsequently the
ensemble characteristics should affect only the value
of Tc.

In conclusion, we emphasize that the mapping follows
from a reorganization of the total phase space including the
replica degrees of freedom without necessitating any an-
satz of the Q matrix structure (replica symmetric or other-
wise), and thus only the ensemble of the disorder is chosen.
Subsequently, within the CG representation, a direct con-

firmation of a thermodynamic phase transition can be
observed without any knowledge of the proper order pa-
rameter (droplet or Parisi-like) of the original spin-glass
model. Furthermore, a virial expansion of the CG density
allows, in principle, for the separation of mean-field (tree-
level diagrams) and correlation effects (loop diagrams) that
may lead to replica symmetry breaking. Within the CG
system of the short-ranged Ising spin-glass systems in
finite dimensions, the mean-field theory should precisely
recover the Sherrington-Kirkpatrick solution, and the cor-
relation effects can be treated as perturbations which can
affect the stability of the spin-glass phase.
In the case of the SSGM, the facility in deriving the CG

model results from the integrability of the spin variables;
however, for Ising-like spins, the methods presented here
must be replaced by a different manipulation. Thus, a
successful application of this approach has been achieved
here, and we look forward to developing the methods
further in other spin-glass models.
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