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The ground-state phase diagram is determined exactly for the frustrated classical Heisenberg model

plus nearest-neighbor biquadratic exchange interactions on a two-dimensional lattice. A square- and a

rhombic-symmetry version are considered. There appear ferromagnetic, incommensurate-spiral, ‘‘up-up-

down-down’’ (UUDD), and canted ferromagnetic states, a nonspiral coplanar state that is an ordered

vortex lattice, plus a noncoplanar ordered state (a ‘‘conical vortex lattice’’). In the rhombic case, which

adds biquadratic terms to the Heisenberg model used widely for insulating manganites, the UUDD state

found is the E-type state observed; this, along with accounting essentially for the variety of ground states

observed in these materials, shows that this model probably contains the long-sought mechanism behind

the UUDD state.
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I. Introduction.—A classical spin model studied by
Thorpe and Blume [1] (TB) showed interesting ground-
state behavior, where there was either simple collinear-spin
long range order, or disorder. The spins were on a linear
chain, with nearest-neighbor (NN) Heisenberg and biqua-
dratic exchange interactions. Recently a next-nearest-
neighbor (NNN) antiferromagnetic Heisenberg exchange
term was added (making the Heisenberg terms frustrated),
solved exactly for the ground state, and found to yield a
rich phase diagram, [2] with spirals and the ‘‘up-up-down-
down’’ (UUDD) state (isotropic version of the UUDD state
of the ANNNI model [3]), plus the TB states.

It was speculated [2] that extension of the model to
lattice dimensionality d ¼ 2, with the rhombic symmetry
of the Heisenberg model used for multiferroic manganites
[4–6], would yield the historically puzzling UUDD
(E-type) state observed in those materials.

Here we carry out this extension, and also treat a corre-
sponding square-symmetry model. We again find the
ground state exactly. As in [2], this is enabled by use of
the LK (Lyons-Kaplan) cluster method [7]; it is also an
additional test of the applicability of that method.

A d ¼ 2 version of the UUDD state is indeed found in
the rhombic model and is essentially the observed UUDD
state [4,8]. Spirals and highly degenerate phases are also
found. A model along these lines appears to be realistic for
the manganites, and provides strong support for the sug-
gested mechanism [2] behind the UUDD state, namely,
frustrated Heisenberg plus biquadratic interactions.

For the square symmetry, a coplanar nonspiral state that
is an ordered array of vortices, a ‘‘vortex lattice’’ (VL), is
found, also discussed earlier by Henley [9] (see also [10]),
both for XY and Heisenberg spins. Also found is a non-
coplanar state, a ‘‘conical vortex lattice.’’

A principal motivation for the addition of biquadratic
terms to the frustrated Heisenberg model [2] was that they
can be large for ions with large spin S [11,12]. Two sources
of these terms are (i) Electronic: higher order terms in the
hopping amplitudes or orbital overlap (leading order yields
the Heisenberg interactions) [13,14] and (ii) Lattice-
induced via spin-lattice interaction [15,16]. There are in-
dications that these sources may be of roughly equal mag-
nitude [11–14]. For the present purposes, the source is not
relevant.
The model Hamiltonian studied is

H ¼ X

hn;mi
½J1Sn � Sm � AðSn � SmÞ2� þ J2

X1

hn;mi
Sn � Sm

þ J02
X2

hn;mi
Sn � Sm; (1)

where Su, a unit 3 vector, is the spin at site u. The first term
sums Heisenberg and biquadratic interactions over NN
pairs: n, m go over the vectors of a square lattice. The
second and third terms are, respectively, sums over the NN
pairs along the (1,1) and (1, �1) diagonals of the square
unit cell. We consider (a) J2 ¼ J02 (square symmetry) and
(b) infinitesimal J02 (rhombic symmetry). The latter gener-
alizes models [4–6] for manganites to A � 0 [17].
Additional motivations are as in [2]: Such terms are used

to mimic the order-selecting effects of thermal, quantum,
or dilution fluctuations (‘‘order-by-disorder’’ effects)
[18,19], its ground-state phase diagram can be found ana-
lytically, and shows properties of interest in statistical
mechanics and for manganites particularly.
The Luttinger-Tisza method and its generalizations

(see the review [20]) appear to be not useful in connection
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with (1) because of the nonlinearity in the equation for
stationarity of H subject to the weak constraint,

P
jðJij �

2AijSi � SjÞSj ¼ �Si.

Instead we turn to the rather unknown LK cluster
method [7], which solves the problem exactly. Recall that
method as applied here. Assume periodic boundary con-
ditions, with the thermodynamic limit to be taken finally
[7]. Then (1) can be written

H ¼ X

n

HcðSn;Snþx̂;Snþx̂þŷ;SnþŷÞ; (2)

where Hc is the cluster energy; hc � Hc=jJ1j is given by

hcðS1;S2;S3;S4Þ ¼ � 1

2

X4

n¼1

½Sn � Snþ1 þ aðSn � Snþ1Þ2�

þ �S1 � S3 þ �0S2 � S4; (3)

where S5 � S1, a ¼ A=jJ1j, � ¼ J2=jJ1j, �0 ¼ J02=jJ1j,
and we have taken J1 < 0. (x̂, ŷ are primitive lattice
vectors.) Clearly, h � H=jJ1j satisfies

h � X

n

minhcðSn;Snþx̂;Snþx̂þŷ;SnþŷÞ: (4)

If states that minimize hc ‘‘propagate,’’ i.e., if there is a
state of the whole system such that every cluster (every
square plaquette with its four spins) achieves the minimum
hc, it follows that the state is a ground state ofH (the global
minimum). To minimize hc, we find, analytically, station-
ary states, construct a phase diagram by comparing their
hc values, and check that there are no lower states by
calculating hc on a mesh over the whole range of the
variables [21].

II. Results [21].—
Case 1. Infinitesimal �0 (rhombic symmetry): For

clarity, we first consider coplanar spins (spin dimension-
ality D ¼ 2, i.e., XY spins). Figure 1 is the phase diagram.
The state, all spins parallel, occurs in the ferro region. In
the upper-right region, the states UUDD or ð�; 0Þ=ð0; �Þ,

shown in Fig. 2, are the ground states for �0 < or> 0; (�,
0) and (0, �) refer to propagation vectors. The UUDD state
is a wave with propagation vector q in the (1,1) direction.
The notation is (qx, qy), x axis to the right, y up.

In the spiral (1; 1) region is a simple spiral [20] with
propagation vector q ¼ ðq0; q0Þ, cosq0 ¼ ½2ð�� aÞ��1. In
the lower-left region a canted ferromagnet, CF2, shown in
Fig. 3, or a spiral are ground states for �0 < or> 0. The
spiral wave vector is (q1, �q1), cosq1 ¼ �1=ð2aÞ, q1
being also the canting angle.
The phase diagram is unchanged for Heisenberg spins.
Case 2. � ¼ �0 (square symmetry): Figure 4 shows the

phase diagrams for XY and for Heisenberg (HEIS) spins.
XY: The ferro region is similar to that in Fig. 1. The (�, 0),
(0, �) states no longer coexist with the UUDD states (� >
1=2, a > 0). The ground state in the VL region, discussed
previously by Henley [9] (who considered only � > 1=2),
can be described as an ordered array of vortices, which we
call a vortex lattice. See Fig. 3 for an example, where the
filled and unfilled circles indicate a pair of vortices with
spin orientations as shown; the plaquette-spin patterns may
be described as clockwise and counterclockwise, respec-
tively. The vortices form a square lattice. In the region
spiral-CF4, a (q0, q0) spiral and a canted ferromagnet, CF4
(see Fig. 3) are degenerate ground states. In the extreme
lower left, the ground state CF2 is no longer degenerate
with a spiral. This canted ferromagnet was also found in
[10]. HEIS: The main change from XY to HEIS is the
replacement of the spiral-CF4 phase by a noncoplanar
state, discussed below.
Noncoplanar states.—The ground state is noncoplanar

in the region conical VL. Figure 5 shows an example. The
spins in each plaquette lie on the surface of a cone, of half-
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FIG. 1 (color online). Phase diagram, �0 ¼ 0 (rhombic sym-
metry). In the upper-right and lower-left regions there is large
degeneracy that is lifted by �0 � 0 in favor of the states given.

FIG. 2. The ground states in the UUDD, ð�; 0Þ=ð0; �Þ region of
Fig. 1.

Spiral (1,1) CF2    VL CF4 

FIG. 3 (color online). Spiral and canted ferromagnets, CFn (for
illustrative value �=4 of the turn-angle q0.). Vortex lattice:
ground state in regions VL of Fig. 4.
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angle�, and the azimuthal angles are equally spaced. Thus
the name ‘‘conical VL.’’ � varies smoothly from 0 at the
ferro boundary to �=2 at the VL boundary. Note that there
is a net spin; i.e., this is ferro- (or ferri)magnetic.

Degeneracies.—In classical systems variables vary con-
tinuously. However, in the XY case, fixing just one spin in
our ground states makes them countable: They derive from
various propagations of the degenerate cluster ground
states, which are clearly countable when one spin is fixed.
This allows the definition of entropy S ¼ ln (number of
states), which we will use for XY spins.

In the CF2 and UUDD regions of Fig. 1 there is a large
degeneracy coming from many ways of propagating the

cluster ground states: the corresponding entropy S �
N1=2 ln2, where N is the number of spins. Nonzero �0
removes this degeneracy. In the spiral-CF4 region of
Fig. 4 XY there is a similarly large degeneracy.

The propagation of the ferro and spiral states, Fig. 1, is
unique. Similarly, all the regions in Fig. 4 other than
spiral-CF4 show unique propagation.

The line segments at � ¼ 0 in Figs. 1 and 4 are the d ¼
2 generalization of the TB disordered states [1]. In d ¼ 1,
S ¼ N ln2. Whether a similar conclusion holds in d ¼ 2 is
an interesting question that should be addressed. We find S
is at least OðN1=2Þ [21]. The line at � ¼ 1, Fig. 1, is the
d ¼ 2 isotropic generalization of the highly degenerate
states of the ANNNI model [3] at the multiphase point.

III. Discussion.—
Case 1. �0 ¼ 0, extreme rhombic symmetry: The

speculation [2] that the d ¼ 2 version of the rhombic
model would be qualitatively similar to the d ¼ 1 case,
is borne out: the phase diagram Fig. 1 is topologically the
same as that for d ¼ 1 [2]. There are, however, three major
differences. The ferro-UUDD boundary occurs at � ¼ 1
for d ¼ 2, vs � ¼ 1=2 for d ¼ 1. While the UUDD state is
the only state in its region for d ¼ 1, in d ¼ 2 there are
other degenerate states, e.g., (�, 0), (0, �). Similarly, in
d ¼ 1 the CF2 state appears alone in its region, while in
d ¼ 2 it is degenerate with other states.
Experimentally it is UUDD, not (�, 0), (0, �), that is

observed [4,8]. As seen from Fig. 2, a small �0 will remove
that degeneracy, a ferromagnetic �0 will favor the UUDD
state. Interestingly, the calculations of Kimura et al. [4]
find a small ferromagnetic �0.
The fact that the value of � needed to get into this

UUDD region is now >1 might be discouraging. Also, a
needs to be �1=2, which also might not bode well for the
present mechanism. However, the unoccupied Mn orbital
(eg) in the manganites gives rise to a ferromagnetic con-

tribution to the Heisenberg exchange in addition to the
usual antiferromagnetic contribution [22]. The resulting
cancellation can be large if the unoccupied orbital lies
close in energy to the occupied orbitals, with the biqua-
dratic exchange not suffering such cancellation [23]. And
the Mn ion in the manganites apparently satisfies this
requirement. This close cancellation has been invoked for
the NN exchange in a different mechanism for the origin of
UUDD [8]. It has also been invoked to justify very large
anisotropies compared to jJ1j [6,24]. But the latter, par-
ticularly the Dzyaloshinskii-Moriya interaction, is ex-
pected to be � the antiferromagnetic term, being
�ðg� 2Þ=g times that term [25] (e.g., in LaMnO3, this
is 1% [26], compared to the tens of % for the biquadratic
terms). In this light, a mechanism along the present lines
(i.e., involving isotropic corrections to Heisenberg inter-
actions) is clearly a strong candidate for the origin of the
UUDD state in manganites. The ferro (which leads to the
A-type ordering [6]), and spiral regions also essentially
account for the other ground-state orderings observed.
The existence of spirals appears to rule out the nonfrus-
trated model [8] as a general theory.
Case 2. � ¼ �0, square symmetry: Under the NN

interaction J1 ! �J1, the net spin in the CF2 and CF4
remains nonzero, although at a smaller value. Interestingly,
this net spin occurs despite having only antiferro-
magnetic interactions in a Bravais lattice. Uniform rotation
by��=2 of the horizontal arrows in the VL state in Fig. 3
changes it to one of the (�, 0), (0, �) states of Fig. 2. At
a ¼ 0, such a uniform rotation through an arbitrary angle
� has energy independent of� for any � [9,27], explaining
why the boundary between VL and (�, 0), (0, �) is the line
a ¼ 0.
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FIG. 4 (color online). Phase diagrams, �0 ¼ � (square sym-
metry), for XY and Heisenberg (HEIS) models, respectively.

FIG. 5 (color online). Conical vortex lattice: ground state in
the conical VL region of Fig. 4 HEIS. Open arrows indicate
plaquette-spin patterns.
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The question of what removes the degeneracy was con-
sidered: Randomness due to dilution was found to give
preference to � ¼ 0 [9,18,28] while quantum fluctuations
stabilize � ¼ ��=2, i.e., the collinear states (�, 0), (0, �)
[9,27]. Furthermore, as we have seen, the same effect is
caused by the biquadratic terms, illustrating the use of the
latter to mimic the fluctuations [18,19]. In view of the
appreciable size of the biquadratic terms, shown by experi-
ment [11,12], true biquadratic interactions might be at least
as important as the fluctuations.

The purely electronic mechanism for the (two-body)
biquadratic terms also gives, in the same order in the
hopping amplitude, three-body, e.g., S1 � S2S2 � S3, and
four-body terms, like S1 � S2S3 � S4. To be complete one
needs information about the coefficients of these various
terms. The only unambiguous experiments, in that they can
contain only two-body terms, are studies of magnetic
dimers. Two examples: Mn impurities in MgO [11], where
Mn-Mn pairs were studied, and an example involvingNi2þ
dimers [29]. In the former case a > 0, in the latter a < 0.
Understanding of how either sign can occur can be seen in
the perturbation calculation of Bastardis et al. [30].
Unfortunately, such a conclusive result is not available
for the three- and four-body terms, as far as we are aware.
There is a calculation of the three-body terms for a rather
special case [30], and the four-body terms have been
calculated only for S ¼ 1=2 spins [10,31]. The lattice-
induced mechanism is similar in that it also gives four-
body terms [16], and sufficiently general explicit calcula-
tions of these terms are not available. Fortunately, the
experiments on MnO, NiO [12], where these extra terms
will appear, show the same physics as represented by the
NN biquadratic terms with a > 0, namely, a preference for
collinearity, thus a stiffening of the collinear antiferromag-
netic state. I.e., the extra terms do not necessarily spoil the
reason for the existence of the UUDD (E-type) state in our
model. Thus we feel that the mechanism presented here for
the UUDD state is probably correct.

In summary, we have shown that an essentially realistic
model for the insulating manganites (the rhombic case)
captures the main ground-state magnetic features seen in
these materials, spirals, A-type and UUDD orE-type order-
ing. Isotropic corrections to frustrated Heisenberg interac-
tions, in the simplified form of biquadratic terms,
characterize the model, a square-symmetry version having
also been studied. And, despite the model’s complexity, the
LK cluster method [7] has been shown to enable simple
and exact determination of the classical ground states.
Finally, the square-symmetry case shows a novel spin
ordering, the conical vortex lattice, which might be acces-
sible in real materials.
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discussions.
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