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The electronic states of lateral many-electron quantum dots in high magnetic fields are analyzed in

terms of energy and spin. In a regime with two Landau levels in the dot, several Coulomb-blockade peaks

are measured. A zigzag pattern is found as it is known from the Fock-Darwin spectrum. However, only

data from Landau level 0 show the typical spin-induced bimodality, whereas features from Landau level 1

cannot be explained with the Fock-Darwin picture. Instead, by including the interaction effects within

spin-density-functional theory a good agreement between experiment and theory is obtained. The absence

of bimodality on Landau level 1 is found to be due to strong spin polarization.
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Spin properties of semiconductor quantum dots (QDs)
are of high interest, as the spin of electrons captured in a
QD could be used to realize a quantum mechanical bit, the
core of future quantum information technologies [1]. In
few electron QDs, the electronic spin has been successfully
implemented, manipulated, and read (for a review, see [2]).
However, in many-electron systems, the dynamics are still
not well understood, especially in high magnetic fields.

For QDs with many electrons, the simplest theoretical
approximation is done with the so-called constant interac-
tion (CI) model [3,4]. This model uses the single-electron
states, most commonly those of a two-dimensional (2D)
harmonic potential (Fock-Darwin spectrum [5,6]), and the
many-body effects are included just by a constant Coulomb
repulsion energy. Despite its simplicity, many features can
be qualitatively explained using this model. Among those
are the formation of the Landau levels (which allows us to
introduce the QD filling factor �), the crossing of states
leading to zigzag patterns, alternating spins, and spin flips.
Beyond the CI model, self-consistent calculations success-
fully described the regularity of zigzag patterns and the
electron densities within certain Landau levels [7]. It was
found that Landau levels form conductive rings in the dot.
Especially for 4> �> 2, a central region is formed with
Landau level 1 (LL1) and an outer ring with Landau level 0
(LL0), as schematically shown in Fig. 1.

Further investigations on spin blockade and Kondo ef-
fect helped to gain knowledge about the spin configuration
in the lowest Landau levels (see, e.g., Refs. [8–13]).
Calculations by Wensauer et al. [14] predicted a spin
polarization in LL0 at the � ¼ 2 border as a function of
the electron number. This was also found experimentally
[11,15]. In addition, collective spin polarization on the
highest occupied Landau level has been found in many-
electron calculations [13,16,17] indirectly supported by
experimental data [10]. However, despite all these results,
the level spectrum of many-electron QDs still leaves open
questions, and further measurements are required.

Here we concentrate on the spin configuration of both
lowest Landau levels in the 4> �> 2 regime. We present
conductance measurements on a lateral QD with approxi-
mately 50 electrons in a perpendicular magnetic field. A
zigzag pattern of electronic states is found and it is com-
pared with many-body calculations within spin-density-
functional theory [18] (SDFT). While the states in LL0
show a striking bimodality that can roughly be explained
with alternating spin states using the CI model, the states of
LL1 do not at all follow this model. However, the behavior
can be understood with the SDFT calculations showing
different spin configurations in the two involved Landau
levels as illustrated in Fig. 1. While LL0 shows a regular
filling of orbitals with alternating spin-up and spin-down
electrons as expected, LL1 is spin-polarized with spin-up
electrons only. Thus, we are able to directly identify
interaction-induced spin polarization, which, besides being
an interesting many-body phenomenon as such, might be
exploited in quantum Hall devices and spintronics.
The sample is made on a GaAs=AlGaAs heterostructure

using local anodic oxidation [19–21] and electron beam
lithography. To allow electronic transport, the QD is con-
nected to two leads, source and drain, as schematically
shown in Fig. 1. A side gate is used to tune the QD
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Source Drain

FIG. 1 (color online). Schematic of a single lateral quantum
dot connected to two leads (Source and Drain). In a perpendicu-
lar magnetic field, Landau levels (LL) appear with a specific spin
polarization. Landau level 0 is located at the edge of the dot,
Landau level 1 in the center. Arrows show the spin configuration
within each Landau level.
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potential. Details about the sample preparation and device
properties can be found in Ref. [22].

Figure 2(a) shows a measurement of the magnetotran-
sport of the system. The differential conductance G is
plotted as a function of the perpendicular magnetic field
B and gate voltage VG. Six Coulomb peaks are visible. The
positions of these peaks reflect the chemical potentials of
ground-state transitions. These positions can be roughly
understood using the CI model. According to this model,
the potentials include a fixed Coulomb repulsion energy
due to the electrostatic interaction of the electronic charge
and a term due to the single-particle excitation spectrum.
The single-particle problem is usually calculated describ-
ing the confinement of the QD as a 2D harmonic potential,
which leads to the Fock-Darwin spectrum [5,6]. In addi-
tion, the electronic spin is included via the Zeeman term
g��BBsz with the gyromagnetic ratio g�, the Bohr-
magneton �B, and the spin quantum number sz ¼ �1=2.
According to this model, the pronounced zigzag structures
appear as, with increasing magnetic field, different states of
the excitation spectrum are energetically favored. The bare
excitation spectrum is made visible by removing the con-
stant gaps between Coulomb peaks, as within the CI model
these gaps are identical with the Coulomb energy.

We apply this technique in Fig. 2(b). The peak positions
of the original Coulomb peaks are transferred to an energy
scale. Then a constant energy is removed such that gaps
between adjacent Coulomb peaks are eliminated (we did
actually remove a gate voltage dependent energy, as the
electrostatic electron-electron interaction is reduced with
increasing VG due to changes in the size of the dot. The
removed energy is, however, constant as a function of
magnetic field, leaving the shapes of Coulomb peaks un-
affected). Now states can be followed over several
Coulomb peaks (several electron numbers). As a result, a
pattern is found with states going up in energy (some

marked with LL1) and states going down in energy
(some marked with LL0). These states can be interpreted
in terms of Landau levels. States with negative slopes are
due to transport via LL0, states with positive slopes are due
to transport via LL1. According to the Fock-Darwin model
with spin, for each Landau level there should be a pairing
of every two lines. Two adjacent peaks use the same orbital
state with opposite spin. Indeed such a pairing is visible for
LL0 but not for LL1.
In order to analyze this behavior in detail, for each

Landau level the energy distances between adjacent peaks
from Fig. 2(b) are plotted in Fig. 3(a). The distances for
LL0 (triangles) show the expected bimodal behavior due to
the electronic spin. The data can be fitted (dashed lines)
using the Fock-Darwin model with confinement strength
@!0 ¼ 1:83 meV and g� ¼ �0:71. The corresponding
Fock-Darwin spectrum using these parameters is shown
in Fig. 3(b) around the chemical potential �46 (black
trace). Spin-up and spin-down states are shown as solid
and dotted lines, respectively. However, the large negative
value for the g� factor (the sign is given by the peak
amplitudes due to spin blockade [10]) is a first hint, that
the description with the CI model is incomplete. Because
of the confinement potential of the dot, the g� factor should

FIG. 2 (color online). (a) Differential conductance G as a
function of magnetic field B and gate voltage VG. Six
Coulomb peaks are visible showing a pronounced zigzag pattern.
(b) The peak positions are transferred to an energy scale with the
Coulomb energy removed. A cross pattern is found with states
going down in energy with increasing field (LL0) and states
going up in energy (LL1).

FIG. 3 (color online). (a) Measured energetic peak distances
for states in LL0 (triangles) and in LL1 (diamonds). The
distances for LL0 show a bimodal behavior due to spin and
can be fitted with the Fock-Darwin model (dashed lines, @!0 ¼
1:83 meV, g� ¼ �0:71). The Fock-Darwin spectrum using these
parameters is shown in (b). Values for LL1 [diamonds in (a)]
cannot be explained with the Fock-Darwin spectrum.
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be more positive than the one of�0:44 for bulk GaAs. And
finally, the description with the CI model is completely
insufficient, when data from LL1 are included. Within the
Fock-Darwin model, the energetic distances do not depend
on Landau level, but they should be identical for LL0 and
LL1. This is obviously not the case. In contrast to the Fock-
Darwin spectrum [Fig. 3(b)] the measured values for LL1
[diamonds in Fig. 3(a)] do not show a bimodal behavior.
Moreover, the values are larger as for LL0 and increase
nonlinearly with magnetic field. Thus a more sophisticated
approach is needed including electron-electron interac-
tions that go beyond the CI model.

In the many-body approach we consider the 2D
N-electron Hamiltonian

H ¼ 1

2m�
XN

i¼1

½pi þ eAðriÞ�2 þ
XN

i<j

e2

4��0�jri � rjj

þXN

i¼1

½VextðriÞ þ Ez;i�; (1)

where A is the external vector potential (in symmetric
gauge) of the homogeneous, perpendicular magnetic field
B ¼ Bẑ, and the last two terms correspond to the external
potential in the harmonic approximation VextðrÞ ¼
m�!2

0r
2=2 with @!0 ¼ 4 meV, and the Zeeman energy

Ez ¼ g��BBsz, respectively. We note that the 2D model-
ing of quasi-2D QDs has been well established (for dis-
cussion on this topic see, e.g., Ref. [23]). We apply here the
conventional effective-mass approximation with the GaAs
material parameters: m� ¼ 0:067 and �� ¼ 12:4. For the
gyromagnetic ratio we have chosen g� ¼ �0:30. The sca-
lar approximation for g� is valid in our system exposed to a
perpendicular, static, and uniform magnetic field. The
situation is different in epitaxial QDs where effects of
anisotropy might be significant [24].

We solve the ground-state energies associated with the
2D N-electron Hamiltonian (1) by applying SDFT [18] in
the collinear-spin representation. We note that the external
vector potential is retained in the corresponding Kohn-
Sham Hamiltonian. To approximate the exchange-
correlation energy Exc we use the 2D local spin-density
approximation with a parametrization of the correlation
energy in the homogeneous 2D electron gas by Attaccalite
et al. [25]. For total-energy calculations on quasi-2D QDs,
SDFT with the 2D local spin-density approximation has
been shown to be a reliable scheme in comparison with
quantum Monte Carlo calculations, even in relatively high
magnetic fields [13,17,26]. Furthermore, it has been found
that the current-SDFT [27] (with the local-vorticity ap-
proximation) does not lead to a considerable improvement
over the SDFT results [26]. In the numerical calculations
we apply the OCTOPUS code package [28] which allows
using arbitrary external potentials in arbitrary dimensions
(1D, 2D, and 3D).

Figure 4(a) shows the chemical potentials �N ¼ EN �
EN�1 of the SDFT calculations for N ¼ 46 . . . 48. The
gaps between adjacent Coulomb peaks are removed the
same way as in Fig. 2(b). The resulting energy-level dis-
tances extracted from the chemical potentials are shown in
Fig. 4(b). For LL1 we find a clear single mode, whereas
LL0 has a bimodal behavior as a function of B. This is in a
good qualitative agreement with the experimental result in
Fig. 3(a).
To analyze the physics behind the energy-level spacings,

we focus in the following on the spin configurations given
by the SDFT calculations. Their connection to the chemi-
cal potentials is shown in Fig. 5. A typical portion of a
Coulomb peak in the zig-zag regime is shown together
with the spin configurations for both Landau levels for the
adjacent regions of constant electron number. LL0 shows
alternating spin filling resulting in the bimodality of peak
sections with negative slopes. The bimodality is due to the
energy difference in adding an electron with spin up to a
new orbital compared with adding an electron with spin
down to a half-filled orbital. We note that the energy
difference decreases as a function of B. This is due to
both the Zeeman effect and the fact that the increasing

FIG. 4 (color online). Results of the SDFT calculations:
(a) chemical potentials �46, �47, and �48 without Coulomb
energy. As in the experiment, a cross pattern is found.
(b) Energetic distances for the two Landau levels. The data
qualitatively fit to the measurements. For LL0 a bimodal behav-
ior is found (squares). The values for LL1 (diamonds) increase
with increasing field and do not show a bimodality.
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magnetic confinement brings the energy states in LL0
closer to each other, so that the energy in occupying a
new orbital decreases with respect to the filling of a half-
filled orbital (costing Coulomb energy).

In contrast with the situation for LL0, the higher Landau
level (LL1), corresponding to peak sections with positive
slopes in Figs. 4 and 5, is completely spin-polarized with
spin up. Thus, the filling mechanism is always the same
and no bimodality is found. The single mode goes up in
energy due to the effective increase in the level spacings as
a function of B, i.e., LL1 becomes more compact, so that
the filling of the spin-up orbitals becomes energetically
more costly.

We point out that the qualitative features in Figs. 4 and 5
are stable with respect to the values chosen for the gyro-
magnetic ratio. The reason behind the strong spin polar-
ization of LL1 is the high density of states close to the
Fermi energy leading to collective, local ferromagnetism
familiar from the Stoner effect [29] and Hund’s rule.
Energetically, this many-body transition corresponds to
gaining electronic exchange at the expense of kinetic en-
ergy in occupying higher levels. Similar behavior corre-
sponding to the formation of ‘‘spin droplets’’ has been
predicted by quantum Monte Carlo and SDFT calculations
on QDs, indirectly supported by the experimental data of
Coulomb-blockade peak positions [13]. It was concluded
that the spin-droplet formation requires a relatively large
number of electrons (N * 30) and considerable strength of
electron-electron interactions. These conditions are ful-
filled by our device, and hence the Landau-level distances
visible in our excitation spectra can be considered as a
direct and distinct evidence of the spin polarization on the
highest occupied Landau level.

To conclude, we analyzed the spin configuration of a
single quantum dot containing approximately 50 electrons.
In high magnetic fields electronic states were investigated

for the two lowest Landau levels. For LL0 distances in the
excitation spectra show a bimodal behavior, while for LL1
only one mode appears. This is explained with two differ-
ent spin configurations in the two Landau levels. While
there is no spin polarization in LL0, LL1 is completely
spin polarized. This is a direct confirmation of the
interaction-induced collective spin polarization in quantum
dots. The observed and quantified phenomenon provides
possibilities for spin manipulation in, e.g., quantum Hall
devices such as point contacts, as well as direct applica-
tions in spintronics.
This work has been supported by BMBF via nanoQUIT,
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