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Scaling of the homogenous vapor-to-liquid nucleation rate, J, is observed in a model Lennard-Jones

(LJ) system. The model uses Monte Carlo simulation–generated small cluster growth to decay rate

constant ratios and the kinetic steady-state nucleation rate formalism to determine J at four temperatures

below the LJ critical temperature, Tc. When plotted vs the scaled supersaturation, lnS=½Tc=T � 1�3=2, the
values of logJ are found to collapse onto a single line. A similar scaling has been observed for the

experimental nucleation rate data of water and toluene.
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Nucleation, the process by which embryos of the new
phase are formed in a first-order phase transition, occurs in
many everyday processes including droplet, aerosol and
ice formation in the atmosphere, and in a host of industrial
processes which break down complex vapors into their
constituents or form alloys and crystalline structures
from the liquid melt. Early in the 20th century a simple
classical nucleation theory (CNT) [1,2] for predicting the
rate of vapor-to-liquid nucleation was developed and used
with considerable success to predict onset conditions. In its
simplest form this model used the bulk liquid surface
tension to determine the free energy of formation of the
n-atom cluster from the vapor. However, when it became
possible in the 1980s to measure nucleation rates as a
function of temperature and for a range of supersaturations
[3–8], it was found that the data displayed a temperature
dependence which was not consistent with CNT. Several
modifications to the classical nucleation theory were pro-
posed in the early 1990s [9–11], the most important cor-
recting the failure of the classical model’s cluster free
energy of formation to reduce to zero for the monomer
(see, for example, Ref. [12]). In the last two decades
extensive computer simulations have been undertaken to
examine the microscopic nature of the small clusters and
the nucleation process [13–40]. In many of these efforts,
the temperature dependence of the nucleation rate was
greatly improved.

In the late 1980s it was noted that the nucleation rate
data exhibited a temperature scaling [41]. An example of
this scaling phenomenon for toluene [42] is shown in
Fig. 1. Figure 1(a) shows the nucleation rates for six
temperatures plotted vs lnS. When plotted in Fig. 1(b) vs

lnS divided by ½Tc=T � 1�3=2, the temperature lines col-
lapse onto a single line. The experimental supersaturation
ratio, S, is given by the ratio of vapor pressures,
P=Pcoexistence, and Tc is the critical temperature for toluene.
The collapse of the temperature lines indicates that J is not
a function of independent variables, S and T, but of the

scaling function, lnSc � lnS=½Tc=T � 1�3=2. A similar
scaling occurs for homogeneous nucleation rate data of

water [43,44]. The scaling function, lnSc, is similar to the
scaled supersaturation used by Binder [45] near the critical
point. Two features of the present scaling are different,
however: the critical exponents are replaced by the volume
to surface dimension ratio, 3=2, and the temperature, T, of
the rate data is far below the critical point, in the range of
T ¼ 0:5Tc.
It was known that the scaling function, lnSc, appears in

the classical model cluster free energy of formation as
½16��3=3�=½lnSc�2 if one assumes a surface tension for
the small clusters of the form �0

0½Tc � T�, where �0
0 is a

constant [41]. The� is the excess surface entropy per atom
in units of k, the Boltzmann constant. However, the mono-
mer flux factor in the classical nucleation rate (CNT) has
an exponential temperature dependence of the form
P=Pc ffi exp½�WoðTc=T � 1Þ� which destroys the scaling
[42,44]. For argonWo ’ 5. Some time ago it was proposed
that this P=Pc temperature dependence is canceled by
extra terms in the free energy of formation generated as
one sums discretely over the smallest cluster free energy
differences [42]. Unfortunately, how this arises in a first-

FIG. 1. The homogeneous vapor-to-liquid nucleation rate data
of Schmitt et al. [4] for toluene at temperatures 265, 255, 245,
235, 225 and 215ð�1Þ K (left to right) plotted vs (a) lnS, and
(b) lnS=½Tc=T � 1�3=2. The normalization constant, Co, is
½Tc=235� 1�3=2 and Tc ¼ 591:8 K.

PRL 105, 046101 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending
23 JULY 2010

0031-9007=10=105(4)=046101(4) 046101-1 � 2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.105.046101


principles model of the vapor-to-liquid nucleation has
remained largely unexplained.

The goal of the present work has been to generate the
nucleation rate in a purely statistical mechanical treatment
of small cluster partition functions to see if, indeed, one
obtains scaling such as that shown in Fig. 1. In the present
study we use the Monte Carlo method to generate growth
to decay rate constant ratios for small clusters in a dilute
Lennard-Jones (LJ) vapor. These rate constant ratios are
then applied to a kinetic nucleation rate formalism [1,46].
The model system is a classical (full potential) Lennard-
Jones dilute vapor with volume, V, composed of a non-
interacting mixture of ideal gases with each n-atom cluster
size constituting an ideal gas of Nn clusters. The separable
classical Hamiltonian gives rise to the following law of
mass action for ratios of cluster numbers in terms of
classical canonical configurational integrals, Qn:
[15,20,34].

Nn

Nn�1N1

¼ Qn

Qn�1Q1n
¼ �n�1

�n

: (1)

At equilibrium in volume, V, detailed balance, Nn�n ¼
�n�1N1Nn�1, is maintained. The kinetic nucleation rate
formalism (which uses steady-state cluster size numbers,
Ns

n) assumes Ns
n�n ¼ �n�1N

s
1N

s
n�1 with cluster growth

and decay taking place via monomers with equilibrium

rate constants, �n and �n. Using �1 ¼ N1

V at equilibrium

and J1 ¼ �1½�1S�2, the steady-state nucleation rate, J, is
given by

1

J
¼ 1

J1
þ XM

n¼2

�
�nð�1SÞ2

Yn

j¼2

�j�1N1S

�j

��1
; (2)

whereM is sufficiently large to ensure convergence. In the
above expression S � Ns

1=N1 is the monomer supersatura-

tion ratio. The equilibrium monomer flux on the n-cluster,
�n�1, is approximated using �n ¼ ðvav=4Þ4�r2n with

½n=�liq� ¼ ½4=3��r3n, and vav ¼ ½8kT=�m�1=2 [2]. The

monomer supersaturation can be put into the calculation
of J after the equilibrium (S ¼ 1) rate constant ratios are
calculated. Bennett [47] Metropolis Monte Carlo simula-
tions are used to determine the canonical partition function
ratios in the following expressions: [15]

� ��Fn � ln

�
�n�1N1

�n

�
(3)

¼ ln

�
Qn�

0

Qn�1Q1ðvn=VÞ
�1

�liq

�
(4)

¼ ��fn � ln
�liq

�1

: (5)

The Qn have been normalized with Vn so that Q1 ¼ 1.
In these simulations, the assumed cluster definition is
n-atoms constrained within a spherical volume, vn ¼

�0n=�liq [13]. The quantity Q1ðvn=VÞ is the scaled simu-

lation volume accessible to the monomer. Formally, the
expression in Eq. (4) is independent of the constant, �0.
However, volumes too large or too small can place physi-
cally unrealistic constraints on the cluster definition. A
working range is 5<�0 < 8 and in the present simulations
�0 ¼ 7 was used. Further details are in Refs. [15,20,34].
The law of mass action calls for the Qn to sample the

same configuration space as Qn�1 and Q1. Equation (4)
provides a consistent method of scaling the two volumes,
vn and V, and a means of calculating �1 for the full LJ
potential. In the limit of infinite cluster sizes ��fn ap-
proaches ln

�liq

�1
. Using the Dunikov [48] corresponding

states procedure one can estimate the full LJ liquid number
density, �liq, at the low temperatures used here and from

the intercept of ��fn at infinite n one can predict a vapor
monomer number density, �1. The simulations are carried
out at the LJ reduced temperatures, Tk=� � T� ¼ 0:335,
0.419, 0.503, and 0.700 corresponding roughly to experi-
mental argon temperatures of T ¼ 40, 50, 60, and 83.6 K.
The Bennett method [47] is well suited for calculating the
free energy differences, �fn, between the two cluster
ensembles: one in which all n-atoms interact normally
and a second in which the interaction of one of the atoms
is turned off. The simulations produce a sequence of rate

constant ratios,
�j�1

�j
, for n ranging from 2 to 192. A reduced

LJ critical temperature, T�
c ¼ 1:313 and reduced critical

density, ��
c ¼ 0:317 are used in the analysis [49]. When the

ratio Tc=T is used the reduced temperature notation, T�, is
omitted.
In Fig. 2(a) is a plot of the simulation results for��fn vs

n�1=3. The intercepts (17.7, 12.9, 9.90 and 5.98) are ex-
trapolated from a least squares fit to data for n > 20. In
Fig. 2(b) is shown the ��Fn divided by ½Tc=T � 1� to

FIG. 2. (a) The ��fn small cluster free energy differences vs
n�1=3 for the small LJ clusters for T� ¼ 0:335 (h), 0.419 (�),
0.503 (4), and 0.700 (e) corresponding roughly to argon LJ
temperatures of 40, 50, 60, and 83.6 K. The n values range from
2 to 192. The intercepts (17.7, 12.9, 9.90, and 5.98) are extrapo-
lated from a least squares fit to data for n > 20. (b) The ��Fn for
the same n values divided by ½Tc=T � 1� where T�

c ¼ 1:313. The
dotted line corresponds to a classical LJ model with excess
surface entropy=k per atom, � ¼ 2:19.
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demonstrate the scaled temperature dependence. An ad-
vantage of this analysis is that one can use the scaled
quantities to predict nucleation rates at temperatures other
than those of the simulation. The slope of the data in
Fig. 2(b) is proportional to the effective surface tension
of the small clusters [20]. The results are compared with a
classical LJ model which corresponds to an excess surface
entropy per atom of 2.19 k (the bulk liquid argon value can

be estimated from �0
0=�

2=3
liq ffi 2:1k) [41]. Merikanto et al.

[37,38] have generated similar free energy differences
using a modification of the original discrete summation
formalism [15] at reduced temperatures of 0.4 and 0.7.
However, they do not examine the scaling properties of
the free energy differences and their results for ��Fn do
not scale at small cluster sizes (n < 20) because of their
cluster definition. Temperatures in the range of 40 K–60 K
correspond roughly to those for which argon onset nuclea-
tion rates have been measured [50,51].

To demonstrate the scaling of the nucleation rates, val-
ues of S are chosen so that the nucleation rates range from
104 to 107 cm�3 s�1 for the LJ argon system. To preserve
the corresponding states representation, J=Jc is plotted in

Fig. 3 where Jc ¼ �c½40=M�1=210�22 s�1, �c is the LJ cri-
tical number density and M is the relative atomic mass.
Figure 3(a) shows the calculated nucleation rates for the
four temperatures plotted vs lnS. When plotted in Fig. 3(b)

vs the scaled supersaturation, lnS=½Tc=T � 1�3=2, the tem-
perature lines collapse onto a single line. That is, scaling
such as that shown in Fig. 1 for the experimental toluene
data is observed in the LJ system modeled here. [52,53]

The source of the scaling in the present model is two-
fold: (1) the corresponding states ½Tc=T � 1� temperature
dependence of the ��Fn [see Fig. 2(b)]; and (2) the dis-
crete summation over the small cluster growth to decay
rate constant ratio contributions prescribed by Eq. (2). The
latter summation introduces terms (not present in the clas-
sical model) which cancel the temperature dependence of

the monomer flux factor [42]. One notes that 1=J ¼P
M
n¼1½1=Jn�, where Jn ¼ �n�

2
1S

nþ1 exp½�P
n
j¼2 ��Fj�.

In obtaining the scaling from the Monte Carlo results, a
reliable �1 for the full LJ potential from the intercepts of
Fig. 2(a) is essential. Vapor pressures corresponding to
these intercepts for the full LJ potential (assuming the
vapor consists of monomers only) are shown in Fig. 4. In
this figure a Dunikov [48] corresponding states comparison
is made with the extrapolated argon vapor pressure formula
used by Fladerer [50] and Iland et al. [51], experimental
data for argon vapor pressure at higher temperatures [54]
and the LJ Monte Carlo results of Chen et al. [31]. One of
the challenges in predicting nucleation rates from potential
models is obtaining reliable monomer vapor number den-
sities at low temperatures, where most of the nucleation
rate data exist. Equally troublesome for experimentalists
can be extrapolating measured vapor pressure data far
below the freezing point. A plot such as Fig. 4 can be
helpful in evaluating the validity of both approximations.
As far as we are aware, this is the first purely simulation

based demonstration of scaling in a model dilute vapor-to-
liquid nucleation process. Future applications of this scal-
ing to atmospheric nucleation via molecular-sized hetero-
geneous sites should be of particular importance [55]. In
this case, the scaled supersaturation dependence can sur-
vive in the larger growing clusters while the molecularly
sized heterogeneity produces an effective reduced excess
molecular or atomic entropy at the cluster surface (�
parameter). This effect is well known in the nucleation of
water (and ice) on surfaces, where the contact angle plays
the role of a reduced� [56]. Applications of the scaling to
homogeneous binary vapor-to-liquid nucleation [57] and to
ice formation on AgI impurities in supercooled water [58]
suggest that this scaling has a wider application. Toward

FIG. 3. (a) Nucleation rates, J=Jc, calculated from the
Monte Carlo simulation–generated growth to decay rate constant
ratios for the model Lennard-Jones system vs lnS at T� ¼ 0:335
(h), 0.419 (�), 0.503 (4), and 0.700 (e) corresponding roughly
to argon LJ temperatures of 40, 50, 60, and 83.6 K. Jc ¼
�c½40=M�1=210�22 s�1. (b) Nucleation rates with the abscissa
divided by ½Tc=T � 1�3=2; Co ¼ ½T�

c=0:419� 1�3=2.
FIG. 4. Corresponding states comparison of � lnðP=PcÞ from
the LJ Bennett MC calculations of the present work (h), the
argon vapor pressure formula of Fladerer [50] and Iland and
Strey [51] (dashed line), the argon experimental vapor pressure
data [54] (4), and the LJ Monte Carlo simulations of Chen et al.
[31] (j).
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this end, our hope is that the present simulation results will
motivate a more fundamental analysis of scaling in nuclea-
tion phenomena, beyond the scope of classical model
concepts.

The authors acknowledge G. Wilemski for helpful dis-
cussions, J. Kiefer for work done on some of the original LJ
cluster simulations and J. Kassner for focusing interest on
the scaling approach.
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