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Phase transitions of systems confined in long cylindrical pores (capillary condensation, wetting,

crystallization, etc.) are intrinsically not sharply defined but rounded. The finite size of the cross section

causes destruction of long range order along the pore axis by spontaneous nucleation of domain walls.

This rounding is analyzed for two models (Ising or lattice gas and Asakura-Oosawa model for colloid-

polymer mixtures) by Monte Carlo simulations and interpreted by a phenomenological theory. We show

that characteristic differences between the behavior of pores of finite length and infinitely long pores

occur. In pores of finite length a rounded transition occurs first, from phase coexistence between two states

towards a multidomain configuration. A second transition to the axially homogeneous phase follows near

pore criticality.
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Fluids and fluid mixtures in nano- and microporous
materials (pore diameters from 1 to 10 �m) play important
roles in various industries (extracting oil and gas from
porous rocks; use as catalysts or for mixture separation in
the chemical and pharmaceutical industry; nanofluidic de-
vices, etc.) [1–3]. The interplay of finite size and surface
effects strongly modifies the phase behavior of such con-
fined fluids [1,3–19] in comparison with the bulk. The
vapor to liquid transition is shifted (‘‘capillary condensa-
tion’’), as well as critical points [3,4,9,12]. Effects of
wetting [20] on phase coexistence give rise to interesting
patterns (plugs versus capsules versus tube structures,
etc. [7]). However, although various phase diagrams (dif-
ferent from the bulk) have been proposed (e.g.,
[1,3,7,9,12,13,17]), many aspects hitherto are not well
understood. E.g., the ‘‘critical point’’ where adsorption or
desorption hysteresis vanishes seems to be systematically
lower than the critical temperature where the density dif-
ference between the vaporlike and liquidlike states van-
ishes [12], in contrast to what theories have predicted [14].

However, a crucial aspect (stressed only in a few pio-
neering studies [3,8], and in the context of Ising or lattice
gas models [21–23]) is the rounding of all transitions,
caused by the quasi-one-dimensional character of a fluid
in a long cylindrical pore with cross-sectional radius R.
With the current progress of producing pores of well-
controlled diameter varying from the nanoscale (carbon
nanotubes [23–25]) to arrays of pores in silicon wafers
[26], up to 150 nm wide or larger and of well-controlled
length, experiments become feasible which are not plagued
by effects of random disorder, which occur in porous
glasses [1,27]. Thus, it is important to understand the phase
transitions in pores more precisely, considering both the
radius R and the length L of the pore as variables (the
important role of L has so far been largely disregarded). In
the present Letter, we elucidate the rounding of vapor-
liquid type transitions in cylindrical pores, based on
Monte Carlo simulations of two generic models and a

phenomenological theory. We show that, even in the ab-
sence of precursors of wetting, two rounded transitions
occur. Near the pore critical temperature at the pressure
where vapor and liquid in the pore coexist, a rounded
transition occurs from a axially homogenous state to a
multidomain configuration, where vaporlike and liquidlike
domains alternate. The properties in this region depend
strongly on R but not at all on L. In contrast, at lower
temperatures the system makes a transition, where the full
capillary is either in a vaporlike or a liquidlike state. The
location of this transition depends on L, and the vapor to
liquid transition is accompanied by a pronounced hystere-
sis. We also show that the effective (size-dependent) free
energy exhibits well-defined spinodals (as a finite size
effect), but they do not control dynamics. Nucleation of
domain walls becomes dominant when their free energy
cost is small (of the order of a few kBT, T being the
temperature; henceforth kB ¼ 1). This domain wall nu-
cleation explains why the hysteresis disappears far below
the capillary critical region for small pores.
The simplest model that already shows some of these

effects is the two-dimensional (2D) Ising model on the
square lattice in the geometry ofD� L strips with periodic
boundary conditions in both directions [21–23,28]. While
this 2D model lacks the surface effects due to the walls of
real 3D pores, it exhibits already the disappearance of
hysteresis far below pore criticality, since the condition
L � D suffices to stabilize multidomain states, as we will
show below. Spins Si ¼ �1 at lattice sites i interact with
their nearest neighbors with an energy J ¼ 1, and an
external field H. We apply the standard single spin-flip
Monte Carlo algorithm [29] and record the magnetization
M ¼ P

N
i¼1 Si=N (N ¼ LD; the lattice spacing being the

unit of length) as a function of H at various T. We start out
with all spins up and H ¼ 0:05. The system runs for a
‘‘time’’ t ¼ 2� 106 Monte Carlo steps per spin (MCS).
Then we decrease H in steps of �H ¼ 0:001, and run the
simulation at each field for the same time, until we reach
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H ¼ �0:05. Afterwards, we reverse the process and in-
crease the field stepwise by �H until we are back at H ¼
0:05. The width of the resulting hysteresis loops [Fig. 1(a)]
strongly decreases with increasing T and for T > T0ðL;DÞ,
the ‘‘hysteresis critical point,’’ a hysteresis is no longer
observed. However, when we record the probability distri-
bution PðMÞ for H ¼ 0 with the Wolff cluster algorithm
[29,30] we observe that PðMÞ still exhibits peaks very
close to the (exactly known [31]) spontaneous magnetiza-
tionMs at temperatures T > T0ðL;DÞ. While for L ¼ 480,
D ¼ 10 these peaks can be followed up to about T ¼ 2:1,
the peaks occur up to about the critical temperature for
D ¼ 10 and smaller L, e.g., L ¼ 40. However, at T0ðL;DÞ
an important change also occurs in PðMÞ: while for T <
T0ðL;DÞ for a wide range of M, PðMÞ is strictly indepen-
dent of M (corresponding to a slab configuration which
contains exactly two noninteracting interfaces [32]), for
T > T0ðL;DÞ a third broad peak in PðMÞ appears at M ¼
0. An examination of snapshot pictures of the system
[Fig. 1(b)] reveals that this third peak is due to multi-
domain configurations [28,33,34].

Such multidomain configurations can in fact be pre-
dicted when one computes the correlation length � along
the strip [Fig. 2(a)] by transfer matrix methods (for L ! 1
[22]) or Monte Carlo (for L � � [33,34]). The latter
estimates were extracted from the wave-vector-dependent

susceptibility �ð ~kÞ for ~k ¼ ~kmin ¼ ð2�=L; 0Þ

� ¼ 1

2 sinðkmin=2Þ
�

�ð0Þ
�ð ~kminÞ

� 1

�
1=2

; (1)

and agree perfectly with the exact results. Thus, for very
long strips the statistical errors are also well under control.
This correlation length below criticality (where well-
defined domains exist) just measures the typical distance
between domain walls along the strip. The approximation
based on the (exactly known [35]) interfacial free energy
�, � � expðD�=TÞ becomes accurate only when � � 105,
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FIG. 1. (a) Magnetization of Ising strips for L ¼ 480, D ¼ 10
plotted vs field H at T ¼ 1:5 (j), 1.6 (m), 1.7 (d), 1.8 (w), 1.9,
and 2.0. Runs with decreasing H are shown as full curves, with
increasingH as broken curves. A detailed analysis shows that the
hysteresis disappears at T0 ¼ 1:9 in this case. (b) Distribution
PðMÞ vs M for H ¼ 0 and T ¼ 1:8–2:2 from bottom to top at
M ¼ 0. The inset is a typical snapshot at T ¼ 2:1 containing
multiple domains stretched in the y direction by a factor �4.
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FIG. 2. (a) Correlation length � (on a logarithmic scale) plot-
ted vs T for Ising strips of width D ¼ 10. Monte Carlo results
(shown with error bars) were extracted for a system of L ¼
10 000, recording the wave-vector-dependent susceptibility

�ð ~kÞ ¼ NhjMð ~kÞj2i where Mð ~kÞ ¼ P
Sj expði ~k� ~rjÞ for ~k ori-

ented in the long direction and k ¼ kmin ¼ 2�=L, using the
formula quoted in the text. Transfer matrix results were com-
puted from the exact formula [Eq. (4.39) of [22] ] for the D�1
system. The broken curve shows the approximation � �
expðD�=TÞ where � is the exactly known interfacial tension
of the Ising model. The value of � at Tc [21], �c ¼ ð4D=�Þ, is
shown as a dot. (b) Weight W of the central peak for strips of
width D ¼ 10 plotted vs temperature for L ¼ 1000, 480, 240,
120, 80, 60 from left to right. The symbols indicate � ¼ L, L=3,
and L=9, respectively. The inset shows a plot of T0ðL;DÞ vs L
(note logarithmic scale) for two choices of D.
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i.e., at temperatures much lower than those of interest for
Fig. 1. This simply represents the well-known argument
[36] that long-range order in quasi-one-dimensional sys-
tems is destroyed due to the entropy gain of putting inter-
faces into the system. The free energy difference (relative
to the single-domain state) for a state with n (noninteract-
ing) interfaces is F ¼ nFint þ nT lnðn=eLÞ, where the total
free energy cost of one interface is given by Fint ¼ D�.

The occurrence of the central peak at T near T0ðL;DÞ
means that when T is raised at H ¼ 0 there is a transition
from nonzero hjMji for T < T0ðL;DÞ to a state with no
order (hjMji � Ms) for T > T0ðL;DÞ. We characterize this
transition by the weight of the central peak of PðMÞ,
defined as W ¼ Rþm

�m PðMÞdM=
Rþ1
�1 PðMÞdM where �m

are the locations of the minima of PðMÞ. Figure 2 shows
that the ‘‘equal weight’’ rule (first order transitions from
one state to another state occur when the weights of the two
states are W ¼ 1=2) roughly corresponds to the condition
� � L=3. With increasing L the transition gets shifted to
lower temperature and also gets sharper. SinceW � 0:1 for
� ¼ L and W � 0:9 for � ¼ L=9, we use � �
expðD�=TÞ � expð2D=TÞ for low T for L ! 1 to esti-
mate both the location of the transition and its width �T,

T0ðL;DÞ � 2D

lnðL=3Þ ; L ! 1;

�T

T0ðL;DÞ �
ln3

lnðL=9Þ :
(2)

Finally, defining a barrier �F from PðMÞ as �F ¼
T ln½PðMmaxÞ=PðmÞ� we see [Fig. 3(a)] why the transition
at T0ðL;DÞ is related to the vanishing of hysteresis:
�FðTÞ ! 0 at a temperature where Mmax and m merge,
which is close to T0 þ�T where W ! 1. Actually, the
hysteresis already vanishes when �F=T � 10 since then
nucleation of interfaces is sufficiently easy.

In order to show that these results carry over to fluids
confined in long cylindrical pores, we have studied the
Asakura-Oosawa (AO) model [37] of colloid-polymer-
mixtures. The latter system is attractive for experiments:

the large colloid size renders effects of the atomistic cor-
rugation of pore walls negligible, and facilitates observa-
tion of wetting layers and interfaces [38]. We describe
colloids as hard spheres of radius rc ¼ 1, and polymers
as soft spheres of radius rp ¼ 0:8. Polymer-colloid overlap

(as well as colloid-colloid overlap) is strictly forbidden,
while polymers can overlap with no energy cost. The phase
diagram of this model in the bulk and for thin films has
already been carefully studied [39,40]. At the cylinder
radius R ¼ D=2 we apply a hard wall, which may overlap
with neither colloids nor polymers. This boundary condi-
tion at the surface leads to an entropic attraction of the
colloidal particles to the wall [40], causing the formation of
a precursor of a wetting layer (a true wetting layer can only
form in the limit D ! 1, of course [40]).
For this model, the polymer fugacity expð�p=kBTÞ or

the related ‘‘polymer reservoir packing fraction’’ �r
p ¼

ð4�r3p=3Þ expð�p=kBTÞ plays the role of an inverse tem-

peraturelike variable, while the colloid packing fraction
�c ¼ ð4�r3c=3ÞNc=V (Nc is the number of colloids in the
system of volume V ¼ �R2L) is the order parameter den-
sity. Figure 4(a), as a counterpart of Fig. 1(b), shows Pð�cÞ
for various values of �r

p. (The same grand canonical

Monte Carlo methods as in [39] are used.) One can clearly
distinguish the crossover from an (asymmetric) double-
peak distribution to a structure with three peaks, and finally
a single peak, which only narrows when �r

p is close to

�r
p;crit ¼ 0:766 [39]. The ‘‘phase diagram,’’ where the

coexisting polymer-rich and colloid-rich phases are esti-
mated from the leftmost to the rightmost peak in Fig. 4(a),
is shown in Fig. 4(b). Figure 3(b) shows that the barrier
against nucleation of interfaces across the pore strongly
decreases with increasing L, and we have checked [34] that
hysteresis disappears when the barrier is a few kBT, as for
the Ising model.
In summary, we have clarified the nature of phase coex-

istence between vapor and liquid phases of fluids (or fluid-
fluid phase coexistence of mixtures) in long cylindrical
pores, depending on pore length L and pore diameter D.
While at high temperatures the structure of the fluid is
axially symmetric, phase separation in the axial direction
sets in at the coexistence pressure when the correlation
length (of the density fluctuations) � grows to the order of
D. Below the pore critical temperature � measures the
distance between domain walls, and at a much lower
temperature (where � � L=3) a second (again rounded)
transition occurs (the pore then is either in an axially
homogeneous vaporlike or liquidlike state). The onset of
adsorption hysteresis in the capillary is linked to this lower
transition. Awetting transition (possible at a flat surface of
a semi-infinite system) is also expected to be strongly
rounded in narrow pores, and should not change the above
conclusions. Our findings provide insight to understand
experiments and simulations of fluids in pores, explaining
the existence of a ‘‘hysteresis critical point’’ distinct from
the pore critical point. A prediction that experiments could
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FIG. 3. (a) Barrier �F=T against nucleation of interfaces in
Ising strips plotted vs T. Several choices of L and D are shown,
as indicated. (b) Barrier �F=T against nucleation of interfaces in
the AO model confined to cylindrical pores of diameter D ¼ 12
plotted vs inverse polymer reservoir packing fraction 1=�r

p.
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test is the decrease of the hysteresis critical temperature
with increasing pore length.
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FIG. 4 (color online). (a) Distribution Pð�cÞ of the number of colloids in a cylinder of diameter D ¼ 12 and length L ¼ 180 (all
lengths are measured in units of the colloid radius) for �r

p ¼ 1:075, 1.10, 1.115, 1.118, 1.20 from top to bottom at h�ci � 0:175.

Above the plot we show a typical snapshot (cross section through the cylinder) at �r
p ¼ 1:10 containing multiple domains. (b) Phase

diagram of the AO model in a cylindrical pore of diameter D ¼ 12 and lengths L ¼ 30, 60, and 180, as indicated. The full curve is the
bulk coexistence curve [39]. Note that the points shown near h�ci � 0:16 to 0.17 mark �r

p0ðD;LÞ for three choices of L.
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