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Topological Defects in Twisted Bundles of Two-Dimensionally Ordered Filaments
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Twisted assemblies of filaments in ropes, cables, and bundles are essential structural elements in both
macroscopic materials and living organisms. We develop the unique, nonlinear elastic properties of
twisted filament bundles that derive from generic properties of two-dimensional line-ordered materials.
Continuum elasticity reveals a formal equivalence between the elastic stresses induced by bundle twist
and those induced by the positive curvature in thin, elastic sheets. These geometrically induced stresses
are screened by fivefold disclination defects in the lattice packing, and we predict a discrete spectrum of
elastic-energy ground states associated with integer numbers of disclinations in cylindrical bundles.
Finally, we show that elastic-energy ground states are extremely sensitive to the defect position in the
cross section, with off-center disclinations driving the entire bundle to buckle and writhe.
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From the textile fibers in our clothing to the steel cables
that suspend the Brooklyn Bridge, twisted filament assem-
blies are familiar structural elements of everyday life. This
deceptively simple geometric motif, a dense packing of
helical filaments with a constant pitch and varying radius,
underlies several unique mechanical properties of ropes
and fibers. The twist of a rope or yarn transmits tension to
lateral compression, binding together multiple short
strands into a single cohesive element of arbitrary length
[1]. For the case of wire ropes, composed of continuous
filaments, a helical pretwist allows one to build a material
with a high tensile strength while maintaining remarkable
flexibility from an assembly of relatively inextensible ele-
ments [2]. It is not surprising that nature has evolved many
ways to take advantage of the mechanical fidelity of ropes,
at much smaller length scales, by way of supermolecular
assemblies of protein filaments in living organisms.
Bundles of cytoskeletal filaments, f-actin or microtubules,
are implicated in a variety of cellular processes in eukary-
otic life, from cell division to mechanosensing [3]. Fibers
of extracellular proteins, like collagen, are ubiquitous me-
chanical components of plant and animal tissue [4].
Because biological filaments are helically structured mole-
cules, intermolecular forces between densely packed fila-
ments generate intrinsic torques in bundle assemblies.
Indeed, there is clear evidence of spontaneous twisting of
a variety biological filament bundle types [5—7], pointing
to yet another function of twist in these self-organized
bundles. The frustration between two-dimensional packing
and interfilament twist generically gives rise to a mecha-
nism of self-limited radial bundle growth [8—10], suggest-
ing that spontaneous bundle twist plays a necessary role in
shaping the structure and mechanics of biological filament
assemblies.

While mechanical considerations of ropes and fibers
date back to as early as Galileo, very little is known about
the role that the cross-sectional ordering plays in determin-
ing the global elastic properties of twisted bundles. In this
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Letter, we describe a continuum approach to the unique,
nonlinear elasticity of two-dimensionally (2D) ordered
filament bundles, revealing a fundamental coupling be-
tween the presence and location of topological defects in
the lattice packing and the global twist of the bundle. We
discover a precise equivalence between the in-plane
stresses created by twisting a bundle and the long-range
stresses introduced into a 2D elastic sheet by forcing it to
adopt a spherically curved geometry. Because of the accu-
mulation of elastic stresses, we show that a sufficiently
large and twisted bundle becomes energetically unstable to
the incorporation of a finite number of fivefold disclination
defects in its cross section. We predict a spectrum of
discrete low-elastic-energy states of twisted bundles, asso-
ciated with an integer number of disclinations as a function
of increasing bundle twist. Finally, we show that the global
geometry of the low-energy states of bundles is extremely
sensitive to the location of disclinations in the cross sec-
tion. Displacing a disclination from the bundle center leads
to a complex class of structures that buckle, writhing out of
the plane, ultimately folding the entire bundle into a com-
pact helical configuration.

Consider a bundle of semiflexible filaments of infinite
length that is organized into a regular array perpendicular
to mean filament orientation along the Z direction. Inter-
actions between filaments favor a constant neighbor spac-
ing, dy, much smaller than the radius of the bundle, R,
which is approximately cylindrical in shape. The zero en-
ergy state of these interactions is a hexagonal packing of
straight filaments. Deviations from the uniform spacing as
well as filament bending are described by the energy [10],

E= % fd3x{/\(uii)2 + 2pugu; + K[ WP (D)

Here, A and u are elastic constants that penalize compres-
sive and shear distortions of the array and u;; is the elastic
strain tensor of the 2D filament bundle. This strain is
constructed from displacements of filament positions,
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u(x), in the xy plane, and the projection of the local
filament orientation, £(x), into the xy plane,

”ij = %(all/i] + 8,141 - tlt]) (2)

The nonlinear contribution to strain from filament tilt is a
direct consequence of the invariance of the elastic energy
under rotation about an axis in the xy plane [11], and can be
intuitively understood to measure distances between neigh-
bor filaments perpendicular to the filament tangent, that is,
the distance of closest approach. The final term in E
describes the bend elasticity of filaments, with K, propor-
tional to the stiffness of filaments.

To study low-energy configurations of twisted filament
bundles possessing defects in cross-sectional order, we
focus on configurations for which the shear and compres-
sive contributions to Eq. (1) are constant along filaments.
In theses structures, u(x) and t, (x) differ along z only by
uniform rotations around an axis in the xy plane, and at
some reference plane (z = 0), the in-plane tilt field is
described by £, (x) = A + Q(2 X x) where x = 0 is the
center of the bundle, A is a constant tilt in the plane, and ()
is the rate of torsion. Initially, we restrict our analysis to
A = 0, in which filaments wind around the geometrical
center of the bundle.

For fixed (), configurations are determined by 9,0;; = 0
subject to stress-free boundary conditions at the surface of
the bundle. As we have reduced the problem to solving for
the stress o;; = 6E/du,; in a single 2D plane, it is conve-
nient to determine the stress tensor in terms an of Airy
stress function, y [12]. By construction, o;; = €;;€;,0;9,x
is divergenceless, and the Airy stress is determined by the
“compatibility relation,” which relates y to the definition
of elastic strain, Eq. (2),
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where Ky =4u(A+ u)/(A+2u) and V, Xt, =
€;;0;t; is the 2D curl. Here, s, = *27/6 denotes the
topological charge of a disclination at position, X,, in the
cross section of the bundle where the local bond angle,
6(x) = €;0;u;/2, rotates around singular points.
Disclinations represent lattice sites of five- (positive) and
sevenfold (negative) symmetry in the otherwise sixfold
symmetric packing. The second line of Eq. (3) describes
the nonlinear contribution from in-plane tilts to the strain in
the bundle, deriving from the fact that in 2D ordered
chains, twisted configurations of tangents necessarily in-
troduce gradients in nearest neighbor orientation, lying in a
perpendicular plane [13]. For the case of a twisted bundle
where V| X t, = £2Q + O[(Qr)?], the second line re-
duces to —Kep = —€;;€,0,0,1;1;/2 = —302, a uniform
and negative source of Airy stress in the bundle.

An analogous compatibility equation describes the non-
linear elasticity of 2D crystalline membranes, known as the

Ky'Wi x = Zsaé(x - X,) —

Foppl-von Karman theory of thin plates [12]. In that case,
the coupling between in-plane strain and out-of-plane
bending generates a source of the Airy stress, —K, where
K is the Gaussian curvature of the surface. Hence, we find
the surprising result that the twist of the filament bundle
generates precisely the same source of stress as stretching a
2D elastic sheet over a positively curved, spherical surface
of radius Re = (+/3Q)~!. Seung and Nelson showed that
the far-field stresses created by Gaussian curvature in 2D
crystalline membranes are precisely of the form to be
“screened” by the presence of pointlike disclination de-
fects in the membrane [14]. For the case of 2D filament
bundles, Eq. (3) shows that positively charged, fivefold
disclinations are able to partially screen the elastic stresses
of twisted bundles.

The elastic energy of twisted bundles with an arbitrary
distribution of disclinations can be computed by solving
Eq. (3) for y subject to vanishing normal stress at » = R by
multipole expansion [15]. These expansions can be
summed to compute the effective theory for the elastic
energy,

E Sa P2\ 3(QR’ ¢ s, Pa)?
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where V is the volume of the bundle and p,, is the radial
distance the ath disclination. The first term describes the
self-energy of a disclination in the bundle, which, notably,
has the same radial dependence as the interaction between
disclinations and twisted-induced stress described by the
second term. The third term describes the twist dependence
of elastic energy in the defect-free state, where y =
KoR?/K,, that measures the relative importance of in-
plane elastic energy to bend elasticity. The final term gives
the effective interaction between disclination pairs in cy-
lindrical crystals,

1 P> g
Vin(Xqr Xg) = @(1 - R—‘;)(l - F)
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where [x' — RI> = R* + pgpp/R* — 2p.pp cos, with 6
the angular separation between disclinations « and 3. The
minimum-energy configurations of bundles with fivefold
(s, = +2/6) disclinations are shown in Fig. 1 for QR =
1.25 and for negligible bending energy, ¥~ ! = 0. For these
results we find that the elastic energy of a filament bundle
is unstable to the incorporation a finite number of discli-

nations when the twist of a bundle exceeds |Q.R| =
\/2/9 = 0.471, at which point the lowest energy is accom-
plished by placing a single fivefold defect at the center.
Upon further twist, this single defect structure gives way to
lower-energy states with 2, 3, 4, 5, ... disclinations.
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Evidently, along with crystals on curved surfaces, twisted
bundles belong to the unusual class of frustrated materials
in which defects are necessary components of ground state
configurations. We note that although sevenfold disclina-
tions are not necessary to screen the twist-induced stresses
in a bundle, we expect these defects to appear in low-
energy configurations when R >> d,,. On large spherical
crystals [16] fivefold disclinations are unstable to breaking
up into extended strings of alternating five- and sevenfold
defects of a net positive charge, so-called grain boundary
scars. By analogy, we anticipate similar extended defect
configurations in the elastic-energy ground states of large
twisted bundles.

The elastic energy in Eq. (4) demonstrates an important
and previously unknown coupling between the in-plane
stresses created by lattice defects and bundles twist: five-
fold disclinations screen the twisted-induced stresses and
vice versa. Hence, the elastic energy of bundles with an
excess of fivefold disclinations (relative to sevenfold) can
always be lowered by twisting a finite amount. The right-
or left-handed spontaneous twist of a bundle is the analog
of the upward or downward buckle of a crystalline mem-
brane induced by the presence of fivefold defects in the
hexagonal order [14]. The degree of ‘“‘torsional buckling”
is sensitive to the relative costs of filament bending and in-
plane elastic energies. We find that an optimal degree of
twist, ), for a bundle with a single centered, fivefold
disclination has the form (Q,R)> = (3 +32/y)"!. For
small bundles of rigid filaments, y — 0, the pitch of the
bundle is sensitive to the bending of the elastic moduli and
insensitive to size, 27/, « +/Ky/K,. While for bundles
much larger than this characteristic size, y — oo, the tilt
angle of the outer filament is predicted by the continuum
theory to achieve a universal value, QR — /1/3 = 0.577.

We now consider filament bundles for which A # 0,
with successive vertical layers rotated and shifted by a
constant amount in the xy plane. From the continuum
theory we derive the mean torque on the filaments due to
the presence of twist- and defect-induced stress,

oE 3

VK, Q Pa_ APaq (Pa\]
— Ssa| 1-2a—2Payn(Pa) (2 x ),
8 as“[l R 2R21H(R):|(Z X
(6)

where o;; is the stress in the A = 0 state. Hence, in a
bundle with a single off-center, fivefold defect, the elastic
energy decreases most rapidly by tilt in a direction 77/2
away from the radial location of the dislocation. When
A # 0, the center of rotation in the bundle is not the central
filament, and Eq. (6) shows that this rotation center, for
which £, (x) = 0, migrates from the bundle center towards
the off-center disclination by a distance |A|/{), demon-
strating that the low-energy state of the bundle adopts a
globally writhing and helical configuration.

To investigate the ground states of bundles with off-
center disclinations, we introduce a discrete, numerical
model of cylindrical bundles of fully flexible filaments
with preferred hexagonal order. Bundles are described
arrays of filaments at positions, X, and filament tangents
corresponding to £, (x) = A + Q(2 X x). The elastic en-
ergy in a vertical cross section of height Az is constructed
following the bead-spring model of Ref. [14],

k
AE =3 D ((xq = xp) 1| = dp)*Alp. )
(ap)

Here, k parametrizes a harmonic restoring force for dis-
tortions in the packing and (x,—Xg); =X, —Xg—
t(x, —xp)-t is the projection of the filament spacing
perpendicular to the local tangent direction, thereby mea-
suring distances of closest approach for weakly bent fila-
ments. The interactions are weighted the lengths of
elements Al,z = Az(t-2)~" which vary with in-plane
tilt in the cross section. To study the ground states numeri-
cally, we generate a fivefold disclination in an unrelaxed,
infinite hexagonal array. This disclination is offset to a
distance, p, from the center of the bundle at a given
azimuthal angle. Lattice positions within a radial distance,
r = R = 10d,), are triangulated and used as initial in-plane
coordinates of filaments in the bundle. The elastic energy
per total filament length is numerically minimized by
relaxing filament positions, ) and A.

The geometry of energy-minimizing configurations is
plotted in Fig. 2 in terms of the rate of torsion, {1, and the
helical radius of the geometric center of the bundle, ry,
both of which reveal a striking sensitivity of global bundle
geometry of the bundle to disclination position. The center
of helical rotation migrates rapidly from r;, = 0 when p =
0 to a position nearly at the boundary of bundle, r;, = 9.7d,
when p = 5d,), adopting a globally helical conformation.
More surprising, the degree of spontaneous rotation, (),
steeply increases as the disclination position is offset from
the bundle center. The helical pitch of the bundle decreases
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FIG. 1 (color online). Solid curves show the elastic energy of
2D bundle ground states as a function of twist times bundle
radius, QR, for K, = 0. The cartoons depict the energy-
minimizing configurations of multiple fivefold disclinations.
The dashed lines show the metastable branches of the
disclination-free and single-disclination bundle energy.
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FIG. 2 (color online). The ground state geometry of the elastic
energy of Eq. (7), for R = 10d, bundles possessing a single
disclination at radius p. The filled, blue circles show the helical
radius of the geometrical center of the bundle and the open, red
circles show the rate of torsion around the z axis. The data for
each p correspond to disclinations at 6 azimuthal angles: 0,
+27/6, £41/6, and 7.

more than threefold as the disclination is moved from p =
0 to p = 5d,. Remarkably, the writhing and contorted
bundle geometries shown in Fig. 3 provide a more uniform
filament spacing than can be achieved in straight bundles.
For disclinations at radial positions, p = 6d,), we find that
bundle ground states are self-intersecting and, therefore,
cannot be modeled without the inclusion of either bend
elasticity or excluded-volume constraints.

In summary, we have demonstrated a coupling between
nonlinear elastic stresses that arise from the twisting of a
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FIG. 3 (color). Cross-sectional (constant z) and side views of
energy-minimizing bundles for the disclination positions, p =
5d,. Filament colors correspond to radial distance from center of
rotation in the xy plane, from yellow r = 0 to blue r = 20d,,.

filament bundle and orientational defects in the lattice
packing. Thus, fivefold disclinations are necessary compo-
nents of low-energy configurations of sufficiently twisted
and large bundles of continuous filaments. We expect this
finding to be particularly relevant to the self-assembled
bundles and fibers of biological filaments, whose chiral
molecular structure leads to a generic preference for inter-
filament twist in compact assemblies. Indeed, cylindrical
collagen fibrils derived from certain tissue types show
pronounced twist, along with considerable evidence from
small-angle scattering of localized disorder in their cross-
sectional organization [6,17]. In light of these observa-
tions, we speculate that the unique properties of these
self-organized collagen fibrils—the well-defined diameter,
the twisted structure, and their “almost crystalline” or-
der—may all find a common origin in generic properties of
the nonlinear elasticity of filament assemblies.
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