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The shear modulus of solid H4e exhibits an anomalous increase at low temperatures that behaves

qualitatively similar to the frequency change in torsional oscillator experiments. We propose that this

stiffening of the shear modulus with decreasing temperature can be described with a glass susceptibility

assuming a temperature-dependent relaxation time �ðTÞ. Below a characteristic crossover temperature TX,

where !�ðTXÞ � 1, a significant slowing down of dynamics leads to an increase in the shear modulus. We

predict that the maximum change of the amplitude of the shear modulus and the height of the dissipation

peak are independent of the applied frequency !. Our calculations also show a qualitative difference in

behavior of the shear modulus depending on the temperature dependence of �ðTÞ
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The low-temperature anomaly of solid helium in tor-
sional oscillators (TO) reported by Kim and Chan [1] has
inspired an intense search for mechanical and thermody-
namic anomalous properties. The observed increase of the
resonance frequency below �200 mK was taken as evi-
dence for mass decoupling due to supersolidity—a quan-
tum solid that can sustain mass superflow without
dissipation. It is now accepted that the presence of defects
in solid 4He is required to produce supersolid signatures. In
addition, it has been speculated that supersolidity may
occur along dislocation lines [2,3] or grain boundaries
[4–6] in solid helium. Direct experimental evidence for a
true phase transition into a supersolid state remains incon-
clusive. To date no definitive sign of Bose-Einstein con-
densation (BEC) has been seen in measurements of the
mass flow [5,7,8], the melting curve [9], and the lattice
structure [10,11].

The basic issue with the unambiguous identification of
the BEC features arises from the presence of defects that
display their own dynamics and contribute to observables
in the same temperature and pressure range, where super-
solid anomalies are expected. We therefore are left with a
dilemma: on one hand, defects are required to produce
supersolidity; on the other hand, defects exhibit their own
dynamics. Thus, any unambiguous identification of a pos-
sible supersolid state relies on a detailed understanding of
the behavior of defects. For that reason we consider a
theoretical framework that captures the dynamics of de-
fects in solid 4He in the form of a glassy component, which
makes up a small fraction of the crystal [12,13]. This
glassy component is suggested to cause the TO and ther-
modynamic anomalies. Further, it is consistent with re-
ported signatures of long equilibration times, hysteresis,
and a strong dependence on growth history. The glass may
be created from distributions of crystal defects forming
two-level-systems (TLS) [14,15]. To determine the nature
of the TLS, a detailed microscopic characterization of
samples is needed. Possible candidates for the microscopic

realization of the TLS are pinned segments of dislocation
lines [12,13,16], which naturally occur in bulk and con-
fined solid helium. These defects can be annealed away
and hence drastically change the mechanical properties of
the solid. We demonstrated in previous work [12,13,16–18]
that the freezing out of excitations can account for the
anomalies in TO and in thermodynamic experiments; a
relaxation time that increases with decreasing temperature
is required to describe the low-temperature anomalous
features.
Here we consider the dynamic response of elastic prop-

erties in 4He crystals [19–25]. Very recent shear modulus
measurements [19–21] reveal qualitative similarities with
the TO experiments [1,26–32]. In the shear modulus ex-
periment, the solid helium is grown in between two closely
spaced sound transducers. When one of the transducers
applies an external strain, the other transducer measures
the induced stress from which the shear modulus of the
sample is deduced. The experiment thus provides a direct
measurement of the elastic response to the applied force
within a broad and tunable frequency range. The frequency
dependence is especially crucial in determining the nature
of the relaxation processes, which is the main focus of this
Letter.
We analyze the shear modulus within the glass frame-

work where the amplitude of the shear modulus increases
(stiffens) upon lowering T because of excitations freezing
out. This is accompanied by a prominent dissipation peak,
indicative of anelastic relaxation processes. These anoma-
lies happen in the same temperature range where the TO
anomalies were found. By studying the glass model for a
complex shear modulus �ð!;TÞ we find the following.
(1) The damping and amplitude of vibrations in 4He are
controlled by freeze-out dynamics. They occur at tempera-
tures where !�ðTÞ � 1. In our picture the glassy contribu-
tion represents a small fraction of the total response
because the glass occupies only a small fraction of the
solid. Thus we propose a theoretical description of an
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elastic material with a small anelastic component that
is modeled by a glassy susceptibility. (2) We calculate
the amplitude of the shear modulus in agreement with
shear mode experiments. Within this approach we find
that the maximum of the shear modulus change and the
height of the dissipation peak are independent of fre-
quency. (3) From our model independent susceptibility
analysis of the Cole-Cole plot, we derive a universal pa-
rameter that can describe either thermal or nonthermal
activation. (4) We predict a relation for the inverse cross-
over temperature 1=TX versus the applied frequency !;
i.e., !�ðTXÞ ¼ 1.

Model.—We investigate the dynamics of the solid using
linear response theory with a backaction term [13,33]:

�@2t ui þ @j�
He
ij ¼ fEXTi þ fBAi ; (1)

where � is the mass density and ui is the displacement in
the ith direction. fEXTi and fBAi are the external force
density and the backaction force density in the ith direc-
tion. �He

ij is the elastic stress tensor due to solid helium. In

general, �He
ij ¼ �ijklukl, with the elastic modulus tensor

�ijkl [33]. The backaction describes the delayed restoring

force of a glass component that backacts on the solid
matrix and thus modifies the net force. For simplicity, we
consider a homogeneous solid and set the shear wave
propagation along the z axis and assume that the wave
polarization lies in the x-y plane. For such a case the
backaction is

fBAi ¼
Z t

�1
dt0Gðt; t0;TÞ@2zuiðt0Þ; (2)

where G describes the strength of the backaction on solid
4He and i ¼ x; y. Although fBAi is typically much smaller
than the elastic restoring force @j�

He
ij , it is in fact this term

that is responsible for the anomaly. The isotropic approxi-
mation is appropriate for measured polycrystalline and
amorphous materials.

Applying the same approximation to the elastic modulus
tensor, �ijkl ¼ �0�ij�kl þ�0ð�ik�jl þ �il�jkÞ, the elastic

stress tensor in Eq. (1) is finite only for orientations j ¼ z
and either k or l equal to z. With k; l being interchangeable,
the relevant element will be �iziz, which gives�0. The fully
dressed shear modulus relates the displacement to an ex-
ternal force, or �@2t ui þ�@2zui ¼ fEXTi . Comparing this
expression with Eq. (1) we obtain

�ð!;TÞ ¼ �0ðTÞ � Gð!;TÞ: (3)

The backaction may be described by a distribution of
Debye relaxors G ¼ R1

0 dtPðtÞ½1� 1=ð1� i!�tÞ�, with

the dimensionless parameter t, the normalized distribution
of relaxation times PðtÞ, and the relaxation time of the glass
�. In general, �ðTÞ increases with decreasing T and ap-
proaches infinity at the ideal glass temperature Tg. The

specific form of �ðTÞ can change qualitatively the T de-
pendence of � and will be discussed. For simplicity, we
choose for G the Cole-Cole distribution. Integrating over

PðtÞ yields [17]:
G ð!;TÞ ¼ g0=ð1� ði!�Þ�Þ; (4)

�ð!;TÞ ¼ �0f1� g=½1� ði!�Þ��g; (5)

with the renormalized parameter g � g0=�0, which is
sample dependent. The experimental measurables are the
amplitude of the shear modulus j�j and the phase delay
between the input and readout signal, � � argð�Þ; �
measures the dissipation of the system, which is related
to the inverse of the quality factor Q�1 � tan�.
Several interesting results follow from Eq. (4). First, the

change in shear modulus �� between zero and infinite
relaxation time is ��=�0 ¼ g, measuring the strength of
the backaction as well as the concentration of the TLS.
Second, the peak height �� of the phase angle is propor-
tional to g. When !� ¼ 1 (location of dissipation peak),
�� becomes approximately �� � g cotð�	=4Þ=ð2� gÞ
when g � 1. For 1<� � 2, this simplifies even further:

�� � ð1� �=2Þð��=�0Þ; (6)

where �� is in units of radian. The peak height ��
depends only on the phenomenological glass parameters
� and g, so both�� and�� are independent of frequency.
Finally, we comment that a glass exhibits viscoelastic

properties [34]. So far the response formulation is equiva-
lent to a viscoelastic system with a Cole-Cole distribution
of relaxation processes also known as a generalized
Maxwell model—parallel connections of an infinite set
of Debye relaxors each with a different �.
Results.—We now compare our glass model calculations

with the experimental shear modulus measurements by
Syshchenko and co-workers [21] for a transducer driven
at 200 Hz (SM200), 20 Hz (SM20), and 2 Hz (SM2) [35].
To model specific examples of the T-dependent �ðTÞ in

Eq. (4), we consider Vogel-Fulcher-Tammann (VFT) and
power-law (PL) relaxation processes, which represent ther-
mal and nonthermal activation processes, respectively. For
the VFT we assume the general form:

�ðTÞ ¼
�
�0e

�=ðT�TgÞ for T > Tg

1 for T � Tg:
(7)

Here �0 is the attempt time and � is the activation energy.
The experimental data for all three frequencies are de-
scribed by a single set of model parameters shown in
Fig. 1. In our parameter search we did not bias Tg to be

positive (real transition at Tg, where � diverges) or negative

Tg. Good agreement between calculations and experiments

is obtained for all three frequencies for Tg ¼ �30 mK. We

refer to this calculation as ‘‘VFT<.’’ Note that the physical
meaning of a negative Tg is that no real phase transition

occurs. The origin of a negative Tg may be an inherent

quantum fluctuation phenomenon due to the large zero-
point motion of helium, which suppresses the onset of a
lower phase transition. This may be analogous to a nega-
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tive Curie-Weiss temperature in magnetism in the presence
of antiferromagnetic fluctuations.

We calculated for VFT< the shear modulus versus tem-
perature to compare with experiment and obtained that
both amplitude and phase angle agree well with experi-
ment; see Fig. 1. Our calculations confirm that the change
of amplitude and peak height of phase angle is nearly
frequency independent. By defining the crossover tempera-
ture TX as the point where the phase angle exhibits a peak
corresponds for the Cole-Cole distribution to a turning
point in the amplitude. As expected, we find that TX

decreases with decreasing !. Since the phase angle mea-
sures dissipation, it can provide valuable information about
the underlying relaxation processes. For example, addi-
tional dissipation seen at higher frequencies may be caused
by additional dissipation mechanisms, e.g., dislocation or
vacancy motion, not included in this theory. Finally, when
we set Tg ¼ 0 K the VFT expression reduces to an

Arrhenius rule ‘‘VFT0.’’ While it can describe TX reason-
ably well, the Arrhenius relaxation shows a linewidth much
narrower than VFT< (not shown), which is not in accord
with the data.

Next we show in Fig. 2 the Cole-Cole plots for experi-
ments and calculations. The experimental Cole-Cole
curves for different frequencies collapse roughly onto
one curve confirming our theoretical assumption that
!�ðTÞ is a universal parameter [36]. In addition, the data
show mirror symmetry about Re½j���0j=��� ¼ 0:5 in

support of the Cole-Cole distribution used. The discrep-
ancy between theoretical and experimental data may be
explained by additional relaxation processes occurring at
temperatures above TX, consistent with the excess dissipa-
tion seen at higher frequencies. Finally, the scaling of the
Cole-Cole plot with !�ðTÞ is a general feature of glasses
that is applicable beyond shear modulus experiments.
Indeed, it has also been seen in the TO experiments [31].
To search for a possible phase transition, we study the

higher and lower frequency behavior for various relaxation
scenarios. For the Cole-Cole distribution the crossover
happens when !�ðTÞ ¼ 1. From that we estimate TX as a
function of the applied frequency f ¼ !=2	. Figure 3
shows 1=TX versus f. The VFT< and VFT0 calculations
give a significantly better description than the PL calcu-
lations. The VFT< line is convex, while the Arrhenius line
VFT0 is straight. The upward curvature is typical for a VFT
relaxation time with Tg < 0, as opposed to Tg > 0. For

comparison, the power-law predictions are also shown for
phase transitions occurring at 0 K (PL0) and 40 mK (PL40).
For positive Tg (see PL40), there is a true freeze-out tran-

sition, indicating the arrested dynamics for f ! 0 Hz. For
both VFT and PL relaxation times our calculations dem-
onstrate that in the low frequency limit the existence of a
phase transition should show clear signatures of TX con-
verging toward the ideal glass temperature Tg. This behav-

ior can serve as experimental evidence for a possible phase
transition.
In summary, we have shown that the low-temperature

shear modulus anomaly of solid 4He can be described
using the theoretical framework of glasses for which we
predict characteristic dissipation signatures. The elastic
shear modulus is strongly affected by the dynamics of
defects. The freezing out of excitations leads to a stiffening

FIG. 2 (color online). The Cole-Cole plots for experimental
data and for VFT< (see text). For given form of �, all different
frequency curves collapse onto one single master curve reflect-
ing that !� is the only scaling parameter. Both Cole-Cole plots
show reflection symmetry about Re½j���0j=��� ¼ 0:5,
which is a consequence of the Cole-Cole distribution function.

FIG. 1 (color online). Experimental data and calculations
(VFT) of the shear modulus versus temperature. The square
symbols are the experimental data for the shear modulus ampli-
tude and the phase angle. The black lines are the results from
calculation. The big green squares mark the peak lo-
cation. The calculation uses � ¼ 1:31, g ¼ 1:44� 10�1, �0 ¼
0:47 pAHz�1, �0 ¼ 50 ns, � ¼ 1:92 K, and Tg ¼ �69:3 mK.

The shear modulus amplitude and phase angle plotted is shifted
by 0:1 pAHz�1 and 3	 with respect to the 2 Hz data.
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of the solid concomitant with a peak in dissipation. By
studying the glass susceptibility due to the backaction on
solid helium, we find that both the amplitude change and T
dependence of the shear modulus are well captured by this
model. An important consequence of the dynamic response
analysis is the description of the dissipation or phase angle.
In the proposed glass model, the peak height of the dis-
sipation is independent of the applied frequency (in linear
response) and linearly proportional to the Cole-Cole ex-
ponent � as well as the backaction strength g. Since g
depends on the concentration of the TLS, we predict that
increasing disorder will result in larger amplitude changes
of the shear modulus. We hypothesize that the freezing out
of fluctuating segments of dislocation lines are the relevant
excitations contributing to the reported anomalies in solid
4He. Additionally, we extracted a universal scaling behav-
ior proportional to !�ðTÞ. This corresponds to Cole-Cole
plots collapsing onto a single curve over a wide range of
frequencies. We would encourage future experiments to
verify this prediction. Finally, we find that for a positive
ideal glass temperature Tg the crossover temperature TX

converges toward Tg. This is another prediction that can

serve as a clear experimental demonstration for the exis-
tence of a true phase transition in solid 4He at low tem-
peratures, if it exists. A detailed understanding of the
microscopic nature of the glass and its excitations remains
a pressing challenge. Future experimental characteriza-
tions may elucidate the puzzles found in the dynamics
and thermodynamics of solid 4He.
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