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The strong radial electric field in a subsonic tokamak pedestal modifies the neoclassical ion parallel

flow velocity, as well as the radial ion heat flux. Existing experimental evidence of the resulting alteration

in the poloidal flow of a trace impurity is discussed. We then demonstrate that the modified parallel ion

flow can noticeably enhance the pedestal bootstrap current when the background ions are in the banana

regime. Only the coefficient of the ion temperature gradient drive term is affected. The revised expression

for the pedestal bootstrap current is presented. The prescription for inserting the modification into any

existing banana regime bootstrap current expression is given.
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The bootstrap current [1,2] is a key feature of advanced
tokamak operating regimes since it can dramatically re-
duce the need to drive current [3]. Moreover, the stability
of tokamaks is sensitive to the details of the bootstrap as
well as driven current profiles, especially for the density
and temperature pedestal just inside the last closed flux
surface [4–7].

Recent impurity flow measurements in the pedestal of
Alcator C-Mod indicate that the poloidal flow of the back-
ground banana regime ions can be in the direction opposite
to the one predicted by conventional neoclassical theory
[8]. Any sign change in the poloidal ion flow has important
implications for the bootstrap current since it is sensitive to
the parallel background ion flow due to momentum ex-
change between electrons and ions.

However, experimental studies of the pedestal bootstrap
current [5–7] measure currents large enough to impact
edge stability and claim qualitative agreement with the
Sauter, Angioni, and Lin-Liu model [9] based on the
conventional neoclassical bootstrap expression [10–12]
derived by assuming the poloidal ion gyroradius is small
compared to the shortest pedestal scale length. Here we
reconcile these seemingly contradictory experimental re-
sults for the bootstrap current and ion flow by first demon-
strating that the change in the sign of the background
poloidal ion flow is due to the strong radial electric in the
pedestal [13] enhancing the pedestal bootstrap current. We
then show that no contradiction arises because the new
formula for the bootstrap current continues to be of the
conventional form and therefore of the general form of
Sauter, Angioni, and Lin-Liu [9] provided the ion tempera-
ture gradient coefficient is allowed to depend on the radial
electric field in the pedestal.

The bootstrap current is normally regarded as the most
important prediction of neoclassical theory and is en-
hanced by strong density and pressure gradients because
of its diamagnetic nature. Conventional tokamaks have

B=Bp � qR=a � 1, where B is the total magnetic field,

Bp is the poloidal magnetic field, q is the safety factor, and

R and a are the major and minor radii, respectively. As a
result, the diamagnetism associated with the trapped and
barely passing particles is larger than that associated with
their gyromotion since the magnetic drift departure from a
flux surface is roughly a poloidal gyroradius �pj¼�jB=Bp

rather than a gyroradius �j¼ð2TjMjÞ1=2c=jZjjeB, where
the subscript j denotes the species of temperature Tj, mass

Mj, and charge Zj, e is the magnitude of the charge of an

electron, and c is the speed of light.
During high confinement operation of Alcator C-Mod

the pedestal is found to have radial density and electron
temperature variations on the scale of the poloidal ion
gyroradius �pi [14]. However, the flows in C-Mod are

subsonic so the only way to satisfy radial ion pressure
balance is for the ions to be nearly electrostatically con-
fined with a somewhat weaker background ion temperature
variation than the density [15]. This weaker ion tempera-
ture variation also enhances the bootstrap current and is
required to minimize entropy production in the pedestal;
however, it is not the primary effect of interest here.
The more important effect is the strong radial electric

field needed to keep the ion flow subsonic in the pedestal

since the poloidal ~E� ~B drift can compete with the small
poloidal projection of the parallel ion streaming, thereby
modifying conventional neoclassical results in the banana
regime [13]. The ion flow is altered because the passing ion
constraint on the ion-ion collision operator [10,11] must be

imposed along the ~E� ~B modified ion trajectory by hold-
ing the canonical angular momentum fixed, rather than the
poloidal flux function. This difference alters the nonlocal
part of the ion distribution function and leads to a poloidal
ion flow sensitive to the radial electric field when this
passing collisional constraint is evaluated retaining the
strong poloidal radial electric field variation along the
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trajectory. Orbit squeezing [16] does not play a role in
modifying the nonlocal portion of the ion distribution
function but does, of course, change the localized contri-
bution and, thereby, radial transport.

The preceding discussion indicates that ion behavior in
the pedestal can be expected to be rather different from that
in the core. Of particular interest for the bootstrap current
calculation is the change in the parallel ion flow on a flux
surface caused by the strong radial electric field inherent in
a subsonic pedestal because of the need to maintain radial
pressure balance. Experiments find that in many tokamaks
the pedestal width can be of the order of the poloidal ion
gyroradius. Thus, for a pedestal ion, variation of the elec-
trostatic energy across a neoclassical orbit is comparable to
that of the kinetic energy, causing this orbit to be substan-
tially modified compared to its core counterpart. Of course,
electron orbits are essentially unchanged since �pe � �pi.

However, even though electrons do not feel the pedestal
electric field directly, it affects them indirectly through
their friction with the modified parallel velocity of the
bulk ions. Consequently, the coefficient preceding the ion
temperature gradient term in the conventional formula and
the Sauter, Angioni, and Lin-Liu form [9] is importantly
modified in the pedestal.

As the preceding paragraph suggests, the first step to
take in revisiting conventional neoclassical theory is to
evaluate the ion orbits accounting for a strong radial elec-
tric field. Here it is worth noticing that the trapped and
barely passing orbit widths are estimated by

ffiffiffi

"
p

�pi, where

" � a=R denotes the inverse aspect ratio. In a realistic
tokamak pedestal

ffiffiffi

"
p

is rather close to unity, making the
ion orbit width comparable to the characteristic scale of the
background electric field. This feature complicates the ion
motion evaluation and, more importantly, can result in
neoclassical transport being nonlocal. To obtain insight
into the impact of the electric field on neoclassical phe-
nomena, while staying within a local treatment, we con-
sider the case of large aspect ratio. Then an ion ‘‘samples’’
the electric potential in the narrow vicinity of a flux sur-
face, thereby allowing us to assume this potential parabolic
and to evaluate the ion trajectory.

Knowing the ion orbits from Ref. [13], we proceed to the
kinetic calculation. Here, the full Maxwellian Rosenbluth
potential form of the like particle collision operator must
be employed [17] along with a term that ensures momen-
tum conservation. This more complete operator [18,19]
captures both energy and pitch angle scattering ion tran-
sitions across the electric field modified trapped-passing
boundary that is no longer a cone centered at the origin of
the ðv?; vkÞ plane. This operator is used to evaluate the

passing collisional constraint in the pedestal to determine
the nonlocal and localized neoclassical corrections to the
leading order ion distribution function, which is a station-
ary Maxwellian fi0. The Maxwellian remains stationary

because the ~E� ~B drift cancels the ion diamagnetic drift in
the pedestal to lowest order, and fi0 permits the strong

density variation required for near electrostatic ion con-
finement through its dependence on total energy.
There are two changes that occur when evaluating the

nonlocal portion of the constraint equation. The first is that
the parallel velocity must be shifted by the quantity

u � cI�0ðc Þ=B (1)

proportional to the poloidal ~E� ~B drift since the deeply
trapped particles are at vk þ u � 0 rather than at vk � 0.

Here � is the electrostatic potential with ~E ¼ ��0 ~rc ¼
�ð@�=@c Þ ~rc and c the poloidal flux function. The
second is that the factors that must be introduced to ensure
momentum conservation in ion-ion collisions change due
to the finite electric field modification of the orbits. As a
result, the perturbed ion distribution function becomes

fi1¼�Ivkfi0
�i

�

1

pi

dpi

dc
þZe

Ti

d�

dc
þ
�

Mv2

2Ti

�5

2

�

1

Ti

dTi

dc

�

þg;

(2)

where g ¼ h� þ ðg� h�Þ vanishes for the trapped par-
ticles (but not the passing), g� h� is the small local
term giving an order

ffiffiffi

"
p

correction to the ion flow (that
we can neglect), and

h� ¼ Iðvk þ uÞ
�i

�

Mðv2 þ u2Þ
2Ti

� �

�

fi0
Ti

dTi

dc
; (3)

with I ¼ RBt, with Bt the toroidal magnetic field, �i ¼
ZeB=Mc, ~B ¼ I ~r� þ ~r� � ~rc , and ni, Ti, pi ¼ niTi, Z,
and M the background ion density, temperature, pressure,
charge number, and mass, respectively. Notice that, in
addition to vk ! vk þ u and v2 ! v2 þ u2 in h�, the

factor � determined by demanding like particle momen-
tum conservation when evaluating g� h� becomes

� ¼
R1
0 dy expð�yÞðyþMu2=TiÞ3=2½�?yþ �kMu2=Ti�

R1
0 dy expð�yÞðyþMu2=TiÞ1=2½�?yþ �kMu2=Ti�

;

(4)

where �? ¼ 3ð2�Þ1=2�ii½erfðxÞ � �ðxÞ�=2x3 and �k ¼
3ð2�Þ1=2�ii�ðxÞ=2x3, with x ¼ vðM=2TiÞ1=2,
�ii ¼ 4�1=2Z4e4ni‘n�=3M1=2T3=2

i , erfðxÞ ¼ 2��1=2 �
R1
0 dy expð�y2Þ�, and �ðxÞ ¼ ½erfðxÞ � x erf0ðxÞ�=2x2.

Using the preceding to obtain the lowest order parallel
background ion velocity gives

Vik ¼ � cI

B

�

d�

dc
þ 1

Zeni

dpi

dc

�

þ 7cIBJðUÞ
6ZehB2i

dTi

dc
; (5)

where

U � uðM=2TiÞ1=2; (6)

h. . .i denotes a flux surface average, and [13]

JðUÞ ¼ ð6=7Þ½ð5=2� �Þ þU2�: (7)
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Adding the perpendicular ion velocity ~Vi? ¼ ðc=B2Þð ~B�
~rc Þ½ðd�=dc Þ þ ðZeniÞ�1ðdpi=dc Þ� to the parallel ion
velocity gives the poloidal ion flow to be

V
pol
i ¼ 7cIBpJðUÞ

6ZehB2i
dTi

dc
: (8)

The parameter U accounts for the presence of the equi-
librium pedestal electric field and becomes comparable to
unity once the spatial scale of the potential � or density ni
is of order �pi. The shaping function JðUÞ is introduced to

denote the difference between the pedestal and conven-
tional J ¼ 1,U ¼ 0, and� ¼ 1:33 result in the core. In the
pedestal, Eqs. (4) and (7) yield J to be a monotonically
decreasing function of equilibrium electric field, thereby
increasing the bootstrap current. The function J goes nega-
tive for U > 1:2 to give an additive positive poloidal flow
from the ion temperature gradient term. The average ped-
estal electric field in tokamaks such as Alcator C-Mod or
DIII-D corresponds to U � 0:75 [14,20], and therefore we

expect Vpol
i to change sign in the pedestal near the electric

field minimum. Importantly, our calculation is carried out
within the large aspect ratio approximation, so the formu-
las involving U stay the same to leading order in " regard-
less of the point at which B is evaluated.

Before presenting the modification to the bootstrap cur-
rent due to the novel features of the ion flow outlined in the
preceding paragraphs, we discuss the experimental evi-
dence available for this effect. To this end, the impurity
flow measurements recently performed at C-Mod [8] turn
out to be important since their poloidal flow is sensitive to
that flow component of the background ions, and therefore
measuring the former determines whether the latter is
changed. Consequently, when the C-Mod study revealed
impurity poloidal flows noticeably larger in banana regime
pedestals than predicted by the conventional core formula,
we were able to understand this seemingly contradictory
result by retaining finite radial electric field modifications.
We next demonstrate how this discrepancy is removed by
employing our formula (7) instead of the usual J ¼ 1 in the
expression (8) for the poloidal ion flow.

The analysis is simplified due to the high charge number
and mass, and therefore high collisionality, of the boron
impurities used in the experiment. These features make the
impurity mean free path much less than parallel connection
length qR. As a result, the parallel ion and impurity flows
are equal, and the usual formula relating the poloidal
velocities of the banana regime background ions and the
Pfirsch-Schluter impurities holds [21–24]:

Vpol
z ¼ Vpol

i � cIBp

eB2

�

1

Zni

dpi

dc
� 1

Zznz

dpz

dc

�

; (9)

where Zz, nz, and pz are the impurity charge number,
density, and pressure, respectively, and higher order terms
in the aspect ratio expansion are omitted. The conventional
formula for the poloidal ion flow (J ¼ 1) makes the sum of

V
pol
i and the diamagnetic terms tend to cancel on the right

side of (9). Therefore, the left side of (9) is relatively small
and gives rise to the previously mentioned discrepancy
between the experiment and conventional neoclassical for-
mulas. On the other hand, accounting for the electric field

makes V
pol
i smaller or even negative, thereby allowing the

terms on the right side of (9) to add and give a larger
prediction for the impurity flow. Hence, the change in

Vpol
i due to the pedestal radial electric field is in the proper

direction and large enough to provide a qualitative under-
standing of the observations.
Because of the small poloidal gyroradius of electrons,

their orbits are insensitive to the background electric field.
As a result, the electron physics can be modified only by
means of the altered background ion flow. Thus, we can
readily adapt the usual techniques of evaluating the boot-
strap current (e.g., see [10–12]) by using our electric field
modified parallel ion flow result.
Before doing so, we remark that the electric field acts to

increase the parallel velocity difference between the ion
and electron flows, Vik � Vek, where Vek is the parallel

electron velocity. In the conventional JðUÞ ¼ 1 limit, the
dTi=dc term on the right side of (5) is in the direction
opposite to the bootstrap current and therefore the flow
difference Vik � Vek. Upon accounting for the presence of

the electric field, JðUÞ becomes smaller or even negative,
making the difference Vik � Vek larger, due to the dTi=dc
on the right side of (5), and thereby increasing the electron
friction with the ions. The electron response to the in-
creased friction reduces the size of the effect by the usual
ffiffiffi

"
p

factor, but the bootstrap current is still enhanced.
By knowing (5), the pedestal bootstrap current can be

straightforwardly evaluated in the same way as in the core,
with the change being solely due to the modified parallel
ion velocity. Therefore, only the coefficient of the ion
temperature gradient term is altered. Indeed, if the boot-
strap current is written as the sum of pressure and tem-
perature (instead of density and temperature) gradients, the
ion temperature gradient term needs only to be multiplied
by JðUÞ to retain electric field effects.
For example, in the arbitrary Z case of Ref. [10], the

electric field modified bootstrap current in a quasineutral
plasma (Zni ¼ ne), with order

ffiffiffi

"
p

corrections ignored,
becomes

Jbsk ¼ �1:46"1=2
cIB

hB2i
�

Z2 þ 2:21Zþ 0:75

ZðZþ 1:414Þ
�

�
�

dp

dc
� ð2:07Zþ 0:88Þne

Z2 þ ðZ2 þ 2:21Zþ 0:75Þ
dTe

dc

� 1:17JðUÞ ne
Z

dTi

dc

�

; (10)

where ne and Te are the electron density and temperature,
respectively, and p ¼ pe þ pi ¼ neðTe þ Ti=ZÞ.
Equation (10) illustrates the enhancement of the bootstrap
current due to the finite radial electric field modification
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factor JðUÞ. This equation predicts that the pedestal boot-
strap current is larger than that given by conventional
formulas, since JðUÞ becomes less than unity as U2 in-
creases and then goes negative for U > 1:2. This new
feature is entirely due to the finite radial electric field
modification of the parallel ion flow.

The Sauter, Angioni, and Lin-Liu formula [9] can be
similarly modified to retain the finite electric field effects
by multiplying their �L34 ion temperature gradient coeffi-
cient by JðUÞ. Consequently, our finite orbit generalization
is qualitatively consistent with their form. As a result, we
have shown that it is not surprising that measurements [5–
7] of the bootstrap current density near the edge fit the
phenomenological, but theory-motivated, form

Jbsk ¼ � cIBp

hB2i
�

�

ne

dne
dc

þ �

Te

dTe

dc
þ 	

Ti

dTi

dc

�

(11)

and thereby find reasonable qualitative agreement with the
neoclassical Sauter, Angioni, and Lin-Liu model [9],
where the dimensionless parameters �, �, and 	 account
for geometrical and collisionality effects. Our first-
principles approach demonstrates that in the banana regime
pedestal the parameter 	 is also dependent upon the equi-
librium axisymmetric electric field but still maintains the
general form of Eq. (11).

In conclusion, we have deduced that the bootstrap cur-
rent in a banana regime pedestal is larger than predicted by
conventional neoclassical theory. This favorable result is
due to the strong pedestal electric field that modifies the
parallel ion flow to increase the velocity difference be-
tween the electron and ion bulks. We expect our findings
to remain qualitatively correct in the case of a more real-
istic pedestal, even though, to obtain these results analyti-
cally, approximations are made—with the large aspect
ratio expansion being the strongest. Indeed, some experi-
mental support for our predictions is provided by impurity
flow observations when the pedestal of Alcator C-Mod is in
the banana regime. These observations [8] are consistent
with the very same finite radial electric field modification
of the bulk ion poloidal flow that increases the bootstrap
current. Therefore our approach is in reasonable agreement
with all experimental observations [5–7] and recovers a
bootstrap current formula of the general Sauter, Angioni,
and Lin-Liu form [9] once the coefficient preceding the ion
temperature gradient term is altered in the prescribed way
to account for the strong pedestal electric field.
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