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Using experiments and combining theory and computer simulations, we show that binary complex

plasmas are particularly good model systems to study the kinetics of fluid-fluid demixing at the ‘‘atom-

istic’’ (individual particle) level. The essential parameters of interparticle interactions in complex plasmas,

such as the interaction range(s) and degree of nonadditivity, can be varied significantly, which allows

systematic investigations of different demixing regimes. The critical role of competition between long-

range and short-range interactions at the initial stage of the spinodal decomposition is discussed.

DOI: 10.1103/PhysRevLett.105.045001 PACS numbers: 52.27.Lw

When a binary fluid is quenched into the immiscible
state, it starts to dynamically demix until the thermody-
namically stable state of two coexisting fluids is reached.
The spinodal decomposition is accompanied by a sequence
of domain growth regimes which are believed to be self-
similar in time; i.e., the domain morphology (within each
regime) is preserved [1–4]. This implies a single time-
dependent characteristic length which obeys a power-law
growth LðtÞ / t�, with distinct growth exponents � pecu-
liar to each regime.

Competing interactions play a very important role in the
morphology of separating phases, resulting in a rich variety
of domain patterns ranging from striped lamellar structures
to hexagonal arrays of droplets [5] and clusters [6]. The
asymptotic evolution (characterized by sharp interfaces
between domains) in systems with such interactions is
governed by the competition between the long-range re-
pulsion stimulating subdivision of domains and the short-
range (effective) attraction resulting in the growth of inter-
facial energy. There has been a great deal of theoretical
research of this process carried out in the mean-field frame-
work (by using the modified Ginzburg-Landau formalism,
e.g., [7,8]). However, there are very few particle-resolved
studies of such systems [9], in particular, addressing the
role of competing interactions.

Complex plasmas are composed of a weakly ionized gas
and microparticles which are highly (negatively) charged
due to absorption of the ambient electrons and ions [10,11].
Binary complex plasmas contain microparticles of two
different sizes (charge is approximately proportional to
size) and constitute a model system which is very well
suited for studying the kinetics of fluid demixing at the
individual particle level: Properties of pair interactions in
such systems can be flexibly tuned, and the interaction
range can be made very long (much longer than the mean
interparticle distance) [10,12]. Moreover, the dynamics of
individual particles at short time scales is virtually un-
damped, because the background gas in complex plasmas

is typically very dilute [11]. These properties of complex
plasmas provide perfect complementarity to the colloid-
polymer mixtures [13] where the interparticle interactions
are usually of a short range and the individual particle
dynamics is damped by the host fluid.
In this Letter, we report on the first-ever series of dedi-

cated experiments which demonstrate the very strong ten-
dency for binary complex plasmas to demix. Such experi-
ments provide us with a unique opportunity to observe both
species of demixing binary system at the individual parti-
cle level. Furthermore, using particle-resolved Langevin
simulations we show that for binary fluids with competing
short-range and long-range repulsive interactions (also ty-
pical to complex plasmas) the onset of the spinodal decom-
position is different from that in fluids with short-range
interactions. Instead of the regular growth sequence [14]—
the initial diffusive regimewith� ¼ 1=3 crossing over into
the hydrodynamic viscous regime with � ¼ 1—the long-
range interactions can shortcut the initial evolution: The
diffusive growth is replaced with the emergence of do-
mains of (almost) time-independent length ‘‘preset’’ by the
interaction range. During this ‘‘plateau’’ regime L is much
larger than the short-range correlation length (which usu-
ally characterizes the initial scale at the diffusive growth),
and interfaces between the domains sharpen until the sur-
face tension drives the transition in a coarsening viscous
growth.
To study the principal possibility of phase separation in

binary complex plasmas, we performed experiments with
the PK-3 Plus rf discharge chamber [15] on board the Inter-
national Space Station. In the experiments carried out at
different discharge conditions (discharge power and gas
pressure), we used various combinations of ‘‘big’’ and
‘‘small’’ monodisperse particles (in the range from 1.55
to 9:2 �m). After the injection, small particles were driven
through a stationary cloud of big ones (by a weak electric
field existing in the discharge). When the small particles
approached the center of the chamber and thus the driving
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field practically vanished, an apparent phase separation
was observed (within 1–2 seconds) accompanied by the
formation of a small-particle droplet with a well-defined
spheroidal shape, as illustrated in Fig. 1 (see also supple-
mental movie S1 [16]). These experiments demonstrate
that binary complex plasmas have a very strong tendency
to demix at time scales of seconds. Below, we identify the
generic (thermodynamic) mechanisms which are respon-
sible for this process.

The prevailing mechanism of interaction between
charged microparticles in complex plasmas is electric re-
pulsion [10,11]. The particle screening is provided by the
ambient electrons and ions and occurs in an extended
region which can be a few orders of magnitude larger
than the particle itself. Moreover, the size of microparticles
is typically very small in comparison with the interparticle
distance. Therefore, we can treat particles as pointlike. At
large distances r, the electrostatic potential of a particle can
be represented in the asymptotic form �ðrÞ ¼ Z�ðZÞYðrÞ,
expressed via the effective charge Z� [which is determined
by the dominating screening mechanism(s) and thus is a
certain function of the actual charge Z] and the dominating
asymptotic profile YðrÞ (independent of Z) [17]. For a
binary system, with particles ‘‘1’’ and ‘‘2’’ characterized
by the actual charges Z1 and Z2, respectively, this yields
the (asymptotic) pair interaction energy VijðrÞ ¼ 1

2 ðZiZ
�
j þ

ZjZ
�
i ÞYðrÞ, i; j ¼ 1; 2. From the generalized Berthelot mix-

ing rule V12 ¼ ð1þ �Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V11V22

p
, one can readily derive the

nonadditivity parameter � and show that for arbitrary non-
linear dependence Z�ðZÞ it is always positive. Thus, dem-
ixing of binary complex plasmas is always stimulated [17].

Theory predicts a rich variety of screening mechanisms
operating in complex plasmas [10,12]. The shape of �ðrÞ
can be affected by the plasma absorption on a particle,
nonlinearity in plasma-particle interactions, ionization-
loss balance, etc. Recently, it was shown that the plasma
production and loss processes can play a crucial role in the
long-range behavior of �ðrÞ [18]. This results in the emer-
gence of two dominating asymptotes of�ðrÞ—both having

the Yukawa form, so that we will refer to it as a double-
Yukawa repulsive potential:

�ðrÞ ¼ 1

r
ðZ�

SRe
�r=�SR þ Z�

LRe
�r=�LRÞ: (1)

It is remarkable that the length scales �SR and �LR can be
very different, and therefore we denoted them as ‘‘short-
range’’ (SR) and ‘‘long-range’’ (LR). Typically, �SR is
determined by the classical mechanism of Debye-Hückel
screening, and the dependence of Z�

SR on Z is governed by

the screening nonlinearity [17]. Therefore, �SR is of the
order of the plasma Debye screening length, which is
normally smaller than the mean interparticle distance �.
In contrast, the magnitude of �LR as well as the dependence
Z�
LRðZÞ is controlled by the balance between the plasma

production and loss. Therefore, �LR can vary over a fairly
broad range and is usually much larger than �.
Furthermore, the ratio Z�

LR=Z
�
SR � � is typically small

(both effective charges are negative) [18]. For a binary
system, Eq. (1) yields the pair interaction energy

(i; j ¼ 1; 2; � ¼ SR;LR): VijðrÞ ¼ 1
2r

P

�ðZiZ
�
�;j þ

ZjZ
�
�;iÞe�r=�� . Note that the (effective) nonadditivity pa-

rameter � now depends on r (see the inset in Fig. 2).
Let us first evaluate the unstable region where binary

fluids interacting via the potential (1) start demixing. For
this purpose we shall employ the stability analysis of the

FIG. 1 (color online). Phase separation in binary complex
plasmas. The figure illustrates one of the experiments performed
under microgravity conditions in the PK-3 Plus rf discharge
chamber (in argon discharge at a pressure of 30 Pa), with
particles of 9.2 and 3:4 �m diameter. Small particles (red
dots) were injected into a stationary cloud of big particles (green
dots) and formed a spheroidal droplet which moved slowly
towards the center of the chamber (to the right). The figure
shows the longitudinal cross section; particles were illuminated
by a thin laser sheet of ’ 0:35 mm thickness.
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FIG. 2 (color). Phase diagram for binary fluids with the
double-Yukawa repulsion (1). The phase variables are the re-
duced total particle density n�3

SR and the relative composition x1
of species 1. Solid lines are the binodals, dashed lines are spino-
dals (critical points are marked by bullets), and dotted tie lines
connect coexisting fluid states (marked by squares)—all ob-
tained from the RPA approach. The calculations are for �1 ¼
6:4� 103, � ¼ 0:2 (for both species), and ~Z ¼ 2:7. Three cases
are illustrated, corresponding to different values of � and ~�SR:
Orange lines are for � ¼ 1, black are for � ¼ 12; in both cases
~�LR ¼ ~�SR ¼ 2:7 (both LR and SR interactions are nonadditive);
green lines show the case � ¼ 12, but with ~�LR ¼ 2:7 and
~�SR ¼ 1 (only LR interactions are nonadditive). For the orange
and black lines, the relations between �SR, �LR, and � (corre-
sponding to Fig. 3, with the same color coding) are drawn
schematically. The inset represents the effective nonadditivity
parameter � vs distance between particles (for black and green
lines).
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Ornstein-Zernike equation combined with the simplest
random-phase approximation (RPA) closure relation
[17,19]. This yields the spinodal

6�1n�
3
SR½~�SR � 1þ ��2ð~�LR � 1Þ�2x1ð1� x1Þ

¼ ~Z�2ð1þ ��2Þx1 þ ð~�SR þ ��2~�LRÞð1� x1Þ: (2)

Here �1 ¼ Z2
1�SR=ðkBT�SRÞ is the coupling parameter

which characterizes the strength of the interaction between
species 1 (kB is the Boltzmann constant and T is the
temperature), x1 is the relative composition of species 1,
and n � ��3 is the total number density of particles. We
also introduced the charge ratio ~Z ¼ Z2=Z1 (for certainty
we assume ~Z > 1) and the screening length ratio � ¼
�LR=�SR. Finally, �SR;LR ¼ Z�

SR;LR=Z are the renormaliz-

ing charge ratios [17]: Their deviations from unity charac-
terize the degree of nonadditivity for the SR and LR
interactions; ~�SR;LR denotes the ratio of �SR;LR for the

particles 2 to that for the particles 1.
Figure 2 illustrates the phase diagram obtained from the

RPA for binary fluids with double-Yukawa interactions (1).
Along with the spinodals, we plotted the corresponding
coexistence lines (binodals). Let us analyze the relative
contribution of the SR and LR interaction parts to the phase
equilibrium. For this purpose we naturally chose an equal
degree of nonadditivity for both parts, ~�LR ¼ ~�SR, and
varied the ratio of the screening lengths �. Equation (2)
immediately shows that for ��2 � 1 the SR interactions
dominate and the spinodal nspðx1Þ coincides with that

derived for binary fluids with (single) Yukawa interactions
[17]. The LR interactions dominate in the opposite limit
��2 � 1, where nspðx1Þ has the same (but rescaled) form.

With the parameter set chosen for Fig. 2 the orange curves
illustrate the ‘‘SR-dominated’’ case, and the black (and
green) curves are for the ‘‘LR-dominated’’ case. This plot
demonstrates that the LR interactions—although relatively
weak—can significantly enhance demixing, which can also
be deduced from Eq. (2): The spinodal for the LR-
dominated case is obtained from the SR curve by dividing
with the large factor ���2. One can also see that for
��2 � 1 the SR nonadditivity has practically no effect
on the equilibrium phase diagram (cf. black and green
curves).

In order to investigate details of the atomistic dynamics
accompanying the phase separation in binary complex
plasmas and make the comparison with theory, we em-
ployed molecular dynamics (MD) simulations with the
Langevin thermostat (see [16] for details). A binary mix-
ture was composed of 729 000 particles (1þ 2) at the off-
critical composition x1 ¼ 0:5. The simulations were per-
formed in a cubic box with the dimensions of 27 mm
(corresponds to � ¼ 0:3 mm) and periodic boundary con-
ditions. The particles interacted via the potential (1), and
the simulation parameters (approximately corresponding
to the experiment shown in Fig. 1) are listed in the caption
of Fig. 3.

The onset and the first stages of the phase separation
were characterized by the evolving domain size LðtÞ,
which was deduced from the time-dependent average
structure factor Sðk; tÞ [2,4,20]. This is illustrated in
Fig. 3, where Sðk; tÞ (for four different screening length
ratios) is plotted at two characteristic moments of time.
The position of maximum of SðkÞ is identified as 2	=L.
One can see that even at the early stage of demixing (see
inset) there is a clear trend for systems with larger � to
demix faster, and at the later stage the difference becomes
drastic. The position of maximum at each simulation time
step was determined from the standard procedure [20], by
using the off-critical fitting function SðkÞ / ðkL=2	Þ2=
½2þ ðkL=2	Þ6�.
Figure 4 summarizes the results of our analysis (see also

supplemental movies S2 and S3 [16]). In the SR-
dominated case � ¼ 1 [when Eq. (1) is reduced to the
regular Yukawa form], the growth of domains of the mi-
nority phase 1 is rather slow [Figs. 4(b) and 4(c)], and the
evolution of LðtÞ [orange dots in Fig. 4(a)] is characterized
by relatively small growth exponents, � 	 0:17 [21]. The
interaction nonadditivity in this case is apparently too
weak, so that domains remain fuzzy (at the simulation
time scales) and their shape is fairly irregular. The charac-
teristic width of the domain interfaces remains a significant
fraction of L, which can explain the mismatch of the
growth exponent with � ¼ 1=3 expected in the diffusive
regime (which presumes negligibly narrow interfaces)
[22,23]. The increase of � (i.e., of the interaction range)
sharpens the interfaces and makes the domains grow
faster—already at � ¼ 2, where the SR and LR interac-
tions contribute almost equally to the phase equilibrium,
the growth exponent reaches the value of � ’ 0:26 [red
dots in Fig. 4(a)].
A further increase of � (dominating LR interactions)

causes a dramatic increase of the surface tension (see [16]).
This results in earlier crossover to the viscous growth

FIG. 3 (color). Average structure factor SðkÞ upon the phase
separation in fluids with the double-Yukawa repulsion (1). The
results are from MD simulations for the off-critical composition
x1 ¼ 1=2, with Z1 ¼ 4000e, kBT ¼ 0:024 eV, �SR ¼ 150 �m,
and � ¼ 0:3 mm; the charge ratios are � ¼ 0:2 and ~Z ¼ 2:7 (as
in Fig. 2). The curves are for four different ratios of the screening
lengths: � ¼ 1 (orange), 2 (red), 4 (blue), and 12 (black). For all
cases, ~�SR ¼ ~�LR ¼ 2:7. The major plot is for the stage of de-
veloped phase separation, t ¼ 10 s, while the inset shows SðkÞ at
the early stage of demixing, t ¼ 1 s [marked in Fig. 4(a) by two
vertical dashed lines].
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regime [2,4], so that the diffusive regime can be completely
preempted. Figures 4(d) and 4(e) illustrate this trend for
� ¼ 12: The initial small domains start to coarse rapidly at
t * 2 s (which is about the demixing time in the experi-
ment), and LðtÞ is almost linear at this stage (0:9 	 � 	
1:05). As expected in this case, the coexistence density
ratio ðn1=n2ÞcoexðtÞ tends to equilibrium [see Fig. 4(f)]: The
ratios deduced from the experiment and simulation are
practically constant and agree very well with the theoreti-
cal equilibrium value [16]. Note that the characteristic
initial size Lð0Þ increases with � as well [see Fig. 4(a)].

It is noteworthy that the early stage of the phase sepa-
ration kinetics is strongly affected by the nonadditivity of
SR interactions—even in the LR-dominated regime. To
illustrate this, we plotted LðtÞ for simulations with � ¼
12 and additive SR interactions [green dots in Fig. 4(a)],
whereas the LR interactions were kept nonadditive (the
same as for black dots). One can see that ‘‘switching off’’

the SR nonadditivity results in a drastic increase of Lð0Þ.
Moreover, this ‘‘freezes out’’ the initial demixing kinet-
ics—the domain size remains practically constant until
LðtÞ abruptly crosses over into the viscous growth regime,
where the developments of the green and black curves are
then almost the same. The relative importance of the SR
and LR nonadditivity can be understood from Fig. 2: While
the major plot demonstrates the practically coinciding
phase boundaries for green and black curves, the inset sug-
gests that when only LR interactions are nonadditive the
effective nonadditivity starts operating at rather large
r (*1 mm for the conditions of Fig. 4). This naturally ex-
plains why in this case Lð0Þ is larger than when both SR
and LR interactions are nonadditive. This interesting phe-
nomenon certainly requires further careful investigation.
In conclusion, the competition between the SR and LR

interactions is a generic process playing an important role
in fluid phase separation occurring in different systems
ranging from complex plasmas to colloidal dispersions.
We believe that the onset of this process—where the dis-
creteness effects play an essential role—requires separate
particle-resolved studies focused on the comparison with
the results of the coarse-grained approach.
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FIG. 4 (color). Kinetics of the phase separation in fluids with
the double-Yukawa repulsion (1). The results are from MD
simulations with the parameters of Fig. 3. The upper panel (a)
shows the characteristic length of growing domains (of the
minority phase 1) versus time LðtÞ, obtained for four different
values of � (color coding of dots is the same as that of curves in
Fig. 3). Green dots are for � ¼ 12 with ~�SR ¼ 1 (only LR
interactions are nonadditive). The middle panel shows the do-
main morphology for� ¼ 1 (b),(c) and � ¼ 12 (d),(e), particles
1 are color coded in red and particles 2 are green (slices of
0.3 mm are depicted). The left column represents the early stage
of the phase separation, t ¼ 1 s; the right column is for the
developed stage, t ¼ 10 s. The lower panel (f) shows the coex-
istence density ratio ðn1=n2ÞcoexðtÞ for � ¼ 12.
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